Зміст | Danfoss-S4 | 5 | 11 | |------------|--|----| | 1 Content | rs · | 13 | | 2 Genera | I Information | 18 | | 2.1 Ove | rview | 18 | | 2.2 Des | ign | 18 | | 2.3 Ben | efits | 18 | | 2.4 Typ | ical applications | 19 | | 2.5 The | Series 45 product family | 19 | | 2.6 Loa | d sensing open circuit system | 21 | | 2.7 Serv | vo Control Orifice | 22 | | 2.7.1 | Servo Control Orifice Principle | 22 | | 2.7.2 | Servo Control Orifice Performance | 23 | | 2.7.3 | Pacing Factor | 24 | | 2.8 Hyd | raulic Controls | 24 | | 2.8.1 | Pressure compensated controls | 24 | | 2.8.1 | .1 Operation | 24 | | 2.8.1 | .2 Pressure compensated system characteristics | 25 | | 2.8.1 | .3 Typical applications for pressure compensated systems | 25 | | 2.8.2 | Remote pressure compensated controls | 25 | | 2.8.2 | 2.1 Remote pressure compensated system characteristics | 26 | | 2.8.2 | 2.2 Typical applications for remote pressure compensated systems | 27 | | 2.8.3 | Load sensing controls | 27 | | 2.8.3 | 3.1 LS control with bleed orifice | 27 | | 2.8.3 | 3.2 Integral PC function | 28 | | 2.8.3 | 3.3 Load sensing system characteristics | 28 | | | etric Controls | 28 | | 2.9.1 | Electric Proportional Controls (EPC) | 28 | | 2.9.1 | .1 PLUS+1® Compliance | 28 | | 2.9.1 | .2 Electric Proportional Control Principle | 28 | | | .3 Electric Proportional Control Response/Recovery | 29 | | 2.9.1 | .4 Electric Proportional Control Characteristic – Normally Closed | 30 | | | .5 Electric Proportional Control Characteristic – Normally Open | 31 | | 2.9.2 | Electric On-Off Controls | 33 | | 2.9.2 | 2.1 PLUS+1 Compliance | 33 | | 2.9.2 | 2.2 Electric On-Off Control Principle | 33 | | 2.9.2 | 2.3 Electric On-Off Control Response/Recovery | 34 | | 2.9.2 | 2.4 Electric On-Off Control Performance vs. Ambient Temperature Characteristic | 34 | | 2.9.2 | 2.5 Electric On-Off Control Characteristic – Normally Closed | 35 | | 2.9.2 | 2.6 Electric On/Off Control Characteristic – Normally Open | 36 | | 2.9.3 | Electric dump valve PC/LS controls | 37 | | 2.9.4 | Electronic Torque Limiting Controls (ETL) | 37 | | 2.9.4 | .1 PLUS+1 Compliance | 37 | | 2.9.4.2 Electric Torque Limiting Control Principle | 38 | |--|----| | 2.9.4.3 Electronic Torque Limiting Control Characteristic | 39 | | 2.9.5 Fan Drive Control (FDC) | 39 | | 2.9.5.1 PLUS+1 Compliance | 39 | | 2.9.5.2 Fan Drive Control Principle | 41 | | 2.9.5.3 Fan Drive Control System Characteristics | 41 | | 2.9.5.4 Unintended Applications for Fan Drive Control Systems | 42 | | 2.9.5.5 Fan Drive Control characteristic - Normally Closed | 42 | | 2.9.5.6 Solenoid data – Normally closed | 43 | | 2.9.5.7 Fan Drive Control configuration | 45 | | 2.9.5.8 NC Fan Drive Control 3D Views | 45 | | 2.10 Angle Sensor | 45 | | 2.10.1 PLUS+1 Compliance | 45 | | 2.10.2 Angle Sensor Principle | 46 | | 2.10.3 Angle Sensor Characteristics | 46 | | 2.10.3.1 J & F-Frame (45-90cc) Angle Sensor Identification Convention: | 47 | | 2.10.3.2 E-Frame (100-147cc) Angle Sensor Identification Convention: | 47 | | 2.10.4 Angle sensor electrical specifications | 50 | | 2.10.5 Angle Sensor Calibration | 50 | | 2.10.6 Angle Sensor Functionality | 50 | | 2.11 Charge Pump Circuits | 50 | | 2.11.1 Example Circuit #1 | 50 | | 2.11.2 Example Circuit #2 | 51 | | 2.12 Operating parameters | 52 | | 2.12.1 Fluids | 52 | | 2.12.2 Viscosity | 52 | | 2.12.3 Temperature | 52 | | 2.12.4 Inlet pressure | 53 | | 2.12.5 Case pressure | 53 | | 2.12.6 Pressure ratings | 54 | | 2.12.7 Speed ratings | 54 | | 2.12.8 Duty cycle and pump life | 54 | | 2.12.9 Speed, flow, and inlet pressure | 55 | | 2.13 Design parameters | 56 | | 2.13.1 Installation | 56 | | 2.13.2 Filtration | 56 | | 2.13.3 Reservoir | 56 | | 2.13.4 Fluid velocity | 56 | | 2.13.5 Shaft loads | 57 | | 2.13.6 Bearing life | 57 | | 2.13.7 Mounting flange loads | 58 | | 2.13.8 Estimating overhung load moments | 58 | | 2.13.9 Auxiliary mounting pads | 59 | | 2.13.10 Input shaft torque ratings | 59 | | 2.13.11 Understanding and minimizing system noise | 60 | | 2.13.12 Understanding and minimizing system instability | 60 | |--|----| | 2.13.13 LS System Over-Signaling | 60 | | 2.14 Sizing equations | 61 | | 3 Frame K2 | 62 | | 3.1 Design | 62 | | 3.2 Technical Specifications | 63 | | 3.3 Order Code | 63 | | 3.4 Performance K2-25C | 69 | | 3.5 Performance K2-30C | 70 | | 3.6 Performance K2-38C | 71 | | 3.7 Performance K2-40C | 72 | | 3.8 Performance K2-45C | 73 | | 3.9 Hydraulic Controls | 74 | | 3.9.1 Pressure Compensated Controls | 74 | | 3.9.2 Remote Pressure Compensated Controls | 75 | | 3.9.3 Load Sensing Pressure Compensated Controls | 76 | | 3.9.4 Load Sensing Control with Bleed Orifice / Pressure Compensated | 77 | | 3.10 Electric Controls | 78 | | 3.10.1 Connectors | 78 | | 3.10.2 Continuous Duty Operating Range | 78 | | 3.10.3 Solenoid Data - Normally Closed | 78 | | 3.10.4 Solenoid Data - Normally Open | 78 | | 3.10.5 Normally Closed Electric On/Off with Pressure Compensation Controls | 79 | | 3.10.6 Normally Open Electric On/Off with Pressure Compensation Controls | 79 | | 3.10.7 Normally Closed Electric Proportional with Pressure Compensation Controls | 81 | | 3.10.8 Normally Open Electric Proportional with Pressure Compensation Controls | 82 | | 3.10.9 Normally Closed Fan Drive Control | 83 | | 3.11 Input Shafts | 84 | | 3.12 Installation Drawings | 86 | | 3.12.1 Axial Ported Endcap | 86 | | 3.12.2 Axial Ported Endcap O-ring Boss Ports Installation Dimensions | 87 | | 3.12.3 Radial Ported Endcap Split Flange Ports | 88 | | 3.12.4 Radial Ported Endcap O-ring Boss Ports | 89 | | 3.12.5 Radial Ported Endcap Installation Dimensions | 90 | | 3.12.6 Front Mounting Flange - SAE-B two bolt | 90 | | 3.12.7 Auxiliary Mounting Pads | 91 | | 3.12.7.1 SAE-A auxiliary mounting pad | 91 | | 3.12.7.2 SAE-B auxiliary mounting pad | 91 | | 3.12.7.3 SAE-A Fixed flange | 92 | | 3.12.7.4 Auxiliary Mounting Pad - Running Cover | 92 | | 3.12.7.5 Electric solenoid, left side | 93 | | 3.12.7.6 Fan drive control | 93 | | 3.13 Displacement Limiter | 93 | | 4 Frames L and K | 95 | | 4.1 Design | 95 | | 4.2 Technical Specifications | 96 | |--|-----| | 4.3 Order code | 96 | | 4.4 Performance L25C | 102 | | 4.5 Performance L30D | 103 | | 4.6 Performance K38C | 104 | | 4.7 Performance K45D | 105 | | 4.8 Hydraulic Controls | 106 | | 4.8.1 Pressure Compensated Controls | 106 | | 4.8.2 Remote Pressure Compensated Controls | 106 | | 4.8.3 Load Sensing/Pressure Compensated Controls | 107 | | 4.8.4 Load Sensing Control with Bleed Orifice / Pressure Compensated | 108 | | 4.9 Electric Controls | 109 | | 4.9.1 Connector | 109 | | 4.9.2 Continuous Duty Operating Range | 110 | | 4.9.3 Solenoid Data - Normally Closed | 110 | | 4.9.4 Solenoid Data - Normally Open | 110 | | 4.9.5 Normally Closed Electric On/Off with Pressure Compensation Controls | 110 | | 4.9.6 Normally Open Electric On/Off with Pressure Compensation Controls | 111 | | 4.9.7 Normally Closed Electric Proportional Controls with PC and LS Compensation | 112 | | 4.9.8 Normally Open Electric Proportional Controls with PC and LS Compensation | 114 | | 4.10 Input shafts | 116 | | 4.11 Installation drawings | 117 | | 4.11.1 Axial Ported Endcap | 117 | | 4.11.2 Axial Ported Endcap Installation Dimensions | 118 | | 4.11.3 Radial Ported Endcap Split Flange Ports | 118 | | 4.11.4 Radial Ported Endcap O-ring Boss Ports | 119 | | 4.11.5 Radial Ported Endcap Rear View | 119 | | 4.11.6 Radial Ported Endcap Installation Dimensions | 120 | | 4.11.7 Front Mounting Flange - SAE-B two bolt | 120 | | 4.11.8 Auxiliary Mounting Pads | 121 | | 4.11.8.1 SAE-A auxiliary mounting pad | 121 | | 4.11.8.2 SAE-B auxiliary mounting pad | 121 | | 4.11.8.3 Auxiliary Mounting Pad - Running Cover | 122 | | 4.11.9 Electric Solenoid, Left Side | 122 | | 4.11.10 Electric Solenoid, Right Side | 122 | | 4.12 Displacement limiter | 123 | | 5 Frame J | 124 | | 5.1 Design | 124 | | 5.2 Technical Specifications | 125 | | 5.3 Order code | 125 | | 5.4 Performance J45B | 136 | | 5.5 Performance J51B | 137 | | 5.6 Performance J60B | 138 | | 5.7 Performance J65C | 139 | | 5.8 Performance J75C | 140 | | 5.9 Hydraulic Controls | 141 | |---|------------| | 5.9.1 Pressure Compensated Controls | 141 | | 5.9.2 Remote Pressure Compensated Controls | 142 | | 5.9.3 Load sensing/Pressure compensated Controls | 143 | | 5.9.4 Load sensing Control with Bleed Orifice/ Pressure Compensated | 144 | | 5.10 Electric Controls | 145 | | 5.10.1 Connectors | 145 | | 5.10.2 Continuous Duty Operating Range | 145 | | 5.10.3 Solenoid Data - Normally Closed | 145 | | 5.10.4 Solenoid Data - Normally Open | 145 | | 5.10.5 Fan Drive Control Solenoid Data - Normally Closed | 146 | | 5.10.6 Normally Closed Electric On/Off with Pressure Compensation Controls | 146 | | 5.10.7 Normally Open Electric On/Off with Pressure Compensation Controls | 147 | | 5.10.8 Normally Closed Electric Proportional with Pressure Compensation Controls | 148 | | 5.10.9 Normally Open Electric Proportional with Pressure Compensation Controls | 149 | | 5.10.10 Normally Closed Electric Torque Limiting Control with Pressure
Compensation Controls | 151 | | 5.10.11 Normally Closed Fan Drive Control | 152 | | 5.11 Input shafts | 153 | | 5.12 Installation drawings | 156 | | 5.12.1 Axial Ported Endcap | 156 | | 5.12.2 Axial Ported Endcap Installation Dimensions | 157 | | 5.12.3 Right Fan Drive Control | 158 | | 5.12.4 Radial Ported Endcap Split Flange Ports | 158 | | 5.12.5 Radial Ported Endcap Rear View | 159 | | 5.12.6 Radial Ported Endcap Installation Dimensions | 160 | | 5.12.7 Right
Angle Sensor Position Installation Dimensions | 161 | | 5.12.8 Front Mounting Flange | 162 | | 5.12.9 Auxiliary mounting pads | 163 | | 5.12.9.1 SAE-A auxiliary mounting pad (integrated) | 163 | | 5.12.9.2 SAE-A auxiliary mounting pad (non-integral) | 164 | | 5.12.9.3 SAE-B auxiliary mounting pad | 165 | | 5.12.9.4 SAE-C auxiliary mounting pad | 165 | | 5.12.9.5 Running cover | 166 | | 5.12.10 Radial Endcap Clockwise | 166 | | 5.12.11 Radial Endcap Counterclockwise | 167 | | 5.12.12 Axial Endcap Clockwise | 167 | | 5.12.13 Axial Endcap Counterclockwise | 167 | | 5.13 Displacement limiter | 168 | | 6 Frame F | 169 | | 6.1 Design | 169 | | 6.2 Technical Specifications | 170 | | 6.3 Order code 6.4 Parformance F74B | 170 | | 6.4 Performance F74B 6.5 Performance F90C | 176
177 | | U.J FEHUIHAHUE FOUC | 1// | | 6.6 Hydraulic Controls | 178 | |---|-----| | 6.6.1 Pressure Compensated Controls | 178 | | 6.6.2 Remote Pressure Compensated Controls | 178 | | 6.6.3 Load Sensing/Pressure Compensated Controls | 179 | | 6.6.4 Load Sensing Control with Bleed Orifice/Pressure Compensated | 180 | | 6.7 Electric Controls | 181 | | 6.7.1 Connectors | 181 | | 6.7.2 Continuous Duty Operating Range | 182 | | 6.7.3 Solenoid Data - Normally Closed | 182 | | 6.7.4 Solenoid Data - Normally Open | 182 | | 6.7.5 Fan Drive Control Solenoid Data - Normally Closed | 182 | | 6.7.6 Normally Closed Electric On/Off with Pressure Compensation Controls | 182 | | 6.7.7 Normally Open Electric On/Off with Pressure Compensation Controls | 183 | | 6.7.8 Normally Closed Electric Proportional with Pressure Compensation Controls | 184 | | 6.7.9 Normally Open Electric Proportional with Pressure Compensation Controls | 185 | | 6.7.10 Normally Closed Electric Torque Limiting Control with Pressure Compensation Controls | 187 | | 6.7.11 Normally Closed Fan Drive Control | 188 | | 6.8 Input shafts | 189 | | 6.9 Installation drawings | 190 | | 6.9.1 Axial Ported Endcap | 190 | | 6.9.2 Axial Ported Endcap Installation Dimensions | 190 | | 6.9.3 Right Fan Drive Control | 191 | | 6.9.4 Radial Ported Endcap Split Flange Ports | 191 | | 6.9.5 Radial Ported Endcap Rear View | 192 | | 6.9.6 Radial Ported Endcap Installation Dimensions | 193 | | 6.9.7 Right Angle Sensor Position Installation Dimensions | 194 | | 6.9.8 Front Mounting Flange | 195 | | 6.9.9 Radial Endcap Clockwise | 197 | | 6.9.10 Radial Endcap Counterclockwise | 198 | | 6.9.11 Axial Endcap Clockwise | 198 | | 6.9.12 Axial Endcap Counterclockwise | 198 | | 6.10 Displacement limiter | 198 | | 7 Frame E | 200 | | 7.1 Design | 200 | | 7.2 Technical Specifications | 201 | | 7.3 Order code | 201 | | 7.4 Performance E100B | 208 | | 7.5 Performance E130B | 209 | | 7.6 Performance E147C | 210 | | 7.7 Hydraulic Controls | 211 | | 7.7.1 Pressure Compensated Controls | 211 | | 7.7.2 Remote Pressure Compensated Controls | 211 | | 7.7.3 Load Sensing/Pressure Compensated | 212 | | 7.7.4 Load Sensing Control with Bleed Orifice/Pressure Compensated | 213 | | 7.8 Electric Controls | 214 | | 7.8.1 Connectors | 214 | |---|-----| | 7.8.2 Continuous Duty Operating Range | 215 | | 7.8.3 Solenoid Data - Normally Closed | 215 | | 7.8.4 Solenoid Data - Normally Open | 215 | | 7.8.5 Normally Closed Electric On/Off with Pressure Compensation Controls | 215 | | 7.8.6 Normally Open Electric On/Off with Pressure Compensation Controls | 216 | | 7.8.7 Normally Closed Electric Proportional with Pressure Compensation Controls | 217 | | 7.8.8 Normally Open Electric Proportional with Pressure Compensation Controls | 219 | | 7.8.9 Normally Closed Electric Torque Limiting Control with Pressure
Compensation Controls | 220 | | 7.9 Input shafts | 222 | | 7.10 Installation drawings | 223 | | 7.10.1 Axial Ported Endcap | 223 | | 7.10.2 Axial Ported Endcap Installation Dimensions | 224 | | 7.10.3 Radial Ported Endcap Installation Dimensions | 225 | | 7.10.4 Right Angle Sensor Position Installation Dimensions | 226 | | 7.10.5 Radial Ported Endcap Rear View | 227 | | 7.10.6 Radial Ported Endcap Split Flange Ports | 227 | | 7.10.7 Front Mounting Flange | 228 | | 7.10.8 Endcap Dimensions | 229 | | 7.10.9 Auxiliary mounting pads | 230 | | 7.11 Displacement Limiters | 232 | | Danfoss-D1P | 235 | | 1 Contents | 237 | | 2 General Information | 240 | | 2.1 Overview | 240 | | 2.2 Features and benefits | 240 | | 2.3 Typical applications | 240 | | 2.4 Design | 241 | | 3 Technical Specifications | 243 | | 3.1 Pump specifications | 243 | | 3.2 Fluid specifications | 244 | | 3.3 D1P 260 angle sensor | 245 | | 3.3.1 Angle sensor principle | 245 | | 3.3.2 Location | 245 | | 3.3.3 Angle sensor characteristics | 246 | | 3.3.4 Angle sensor electrical specifications | 247 | | 3.3.5 Angle sensor calibration | 247 | | 3.3.6 Angle sensor functionality | 248 | | 4 Model Code | 249 | | 4.1 Model code | 249 | | 4.2 Displacement, rotation and product version | 250 | | 4.3 Control types | 250 | | 4.4 Input shaft options | 251 | | 4.5 Mounting flange options | 251 | | 4.6 End cap and main port options | 251 | | 4.7 Auxiliary mounting flange options | 252 | |--|-----| | 4.8 Power control settings | 252 | | 4.9 Pressure compensated control settings | 253 | | 4.10 Load sensing control settings | 253 | | 4.11 Hydraulic displacement control setting | 253 | | 4.12 Maximum and minimum displacement settings | 253 | | 4.13 Minimum displacement settings | 253 | | 4.14 Special hardware and features | 254 | | 4.15 Tandem pump information | 255 | | 5 Parameters | 256 | | 5.1 Pressure | 256 | | 5.2 Speed | 256 | | 5.3 Performance | 257 | | 5.3.1 Input power | 257 | | 5.3.2 Output flow | 259 | | 5.3.3 Efficiency | 260 | | 5.4 Fluid | 261 | | 5.4.1 Viscosity | 261 | | 5.4.2 Temperature | 261 | | 5.4.3 Fluid velocity | 261 | | 5.5 Shaft torque ratings | 262 | | 5.6 Shaft load | 262 | | 5.7 Mounting flange loads | 262 | | 5.8 Auxiliary mounting pads | 262 | | 5.9 Estimating overhung load moments | 263 | | 5.10 Understanding and minimizing system noise | 264 | | 5.11 Installation | 264 | | 5.12 Filtration | 264 | | 5.13 Reservoir | 265 | | 5.14 Sizing Equations | 265 | | 6 Control Type | 266 | | 6.1 NPNN (Pressure Compensated Control) | 266 | | 6.2 NPSN (Pressure Compensated Control + Load Sensing Control) | 268 | | 6.3 NPNR (Pressure Compensated Control + Remote Pressure Compensated Control) | 270 | | 6.4 TPSN (Power Control + Pressure Compensated Control + Load Sensing Control) | 272 | | 6.5 NNES (Electric Displacement Control + Load Sensing Control) | 274 | | 6.5.1 Solenoid Specification | 276 | | 6.5.2 Standard EDC Valve | 277 | | 6.5.3 NNES Priority | 277 | | 6.6 TPE2/TPE5 (Power Control + Pressure Compensated Control + Electric Displacement Control) | 278 | | 6.6.1 TPE2/TPE5 Priority | 278 | | 6.7 NPE2/NPE0 (Pressure Compensated Control + Electric Displacement Control) | 279 | | 7 Installation Drawings | 280 | | 7.1 Size 130/145 | 280 | |---|-----| | 7.1.1 Dimensions (mm) and port descriptions | 280 | | 7.1.1.1 Size 130/145: TPSN w/o Charge Pump | 280 | | 7.1.1.2 Size 130/145: TPE5 w/o Charge Pump | 282 | | 7.1.1.3 Size 130/145: TPSN w/ Charge pump | 284 | | 7.1.1.4 Size 130/145: TPE5 w/ Charge Pump | 286 | | 7.1.2 Input shaft | 288 | | 7.1.2.1 Shaft specifications | 288 | | 7.1.3 Aux mounting flange | 290 | | 7.1.3.1 Size 130/145: Option NN (No Coupling) | 290 | | 7.1.3.2 Size 130/145: Option A1 (SAE-A, 9 teeth) | 290 | | 7.1.3.3 Size 130/145: Option A2 (SAE-A, 11 teeth) | 291 | | 7.1.3.4 Size 130/145: Option B1 (SAE-B, 13 teeth) | 292 | | 7.1.3.5 Size 130/145: Option B2 (SAE-B, 15 teeth) | 292 | | 7.1.3.6 Size 130/145: Option BA (SAE-B, 13 teeth) | 293 | | 7.1.3.7 Size 130/145: Option C5 (SAE-C, 14 teeth) | 293 | | 7.1.3.8 Size 130/145: Option D5 (SAE-D, 24 teeth) | 294 | | 7.2 Size 193 | 295 | | 7.2.1 Dimensions (mm) and port descriptions | 295 | | 7.2.1.1 Size 193: TPE2 w/ Charge Pump | 295 | | 7.2.1.2 Size 193: TPSN w/ Charge Pump | 297 | | 7.2.2 Input shaft | 299 | | 7.2.2.1 Shaft specifications | 299 | | 7.2.3 Aux mounting flange | 302 | | 7.2.3.1 Size 193: Option NN (No Coupling) | 302 | | 7.2.3.2 Size 193: Option A1 (SAE-A, 9 teeth) | 302 | | 7.2.3.3 Size 193: Option A3 (SAE-A, 13 teeth) | 303 | | 7.2.3.4 Size 193: Option B1 (SAE-B, 13 teeth) | 303 | | 7.2.3.5 Size 193: Option B2 (SAE-B, 15 teeth) | 304 | | 7.2.3.6 Size 193: Option BA (SAE-B, 13 teeth) | 305 | | 7.2.3.7 Size 193: Option BB (SAE-B, 13 teeth) | 306 | | 7.2.3.8 Size 193: Option C5 (SAE-C, 14 teeth) | 307 | | 7.2.3.9 Size 193: Option C9 (SAE-C, 13 teeth) | 307 | | 7.2.3.10 Size 193: Option D2 (SAE-D, 13 teeth) | 308 | | 7.2.3.11 Size 193: Option D5 (SAE-D, 24 teeth) | 308 | | 7.2.3.12 Size 193: Option E2 (SAE-E, 24 teeth) | 309 | | 7.3 Size 260 | 310 | | 7.3.1 Dimensions (mm) and port descriptions | 310 | | 7.3.1.1 Size 260: TPE2 w/ Charge Pump | 310 | | 7.3.1.2 Size 260: TPSN w/ Charge Pump | 312 | | 7.3.2 Input shaft | 314 | | 7.3.2.1 Shaft specifications | 314 | | 7.3.3 Aux mounting flange | 317 | | 7.3.3.1 Size 260: Option A1 (SAE-A, 9 teeth) | 317 | | 7.3.3.2 Size 260: Option A3 (SAE-A, 13 teeth) | 317 | | 7.3.3.3 Size 260: Option B1 (SAE-B, 13 teeth) | 318 | |--|-----| | 7.3.3.4 Size 260: Option B2 (SAE-B, 15 teeth) | 318 | | 7.3.3.5 Size 260: Option BA (SAE-B, 13 teeth) | 319 | | 7.3.3.6 Size 260: Option BB (SAE-B, 13 teeth) | 320 | | 7.3.3.7 Size 260: Option C5 (SAE-C, 14 teeth) | 321 | | 7.3.3.8 Size 260: Option C9 (SAE-C, 13 teeth) | 322 | | 7.3.3.9 Size 260: Option D2 (SAE-D, 13 teeth) | 322 | | 7.3.3.10 Size 260: Option D5 (SAE-D, 24 teeth) | 323 | | 7.3.3.11 Size 260: Option E2 (SAE-E, 24 teeth) | 323 | | 7.3.3.12 Size 260: Option E3
(SAE-E, 28 teeth) | 324 | | 7.4 Inlet pressure gauge port | 325 | | 8 Additional Information | 327 | | 8.1 Tandem with Danfoss pumps | 327 | | 8.2 Tandem pump torque | 327 | | 8.3 Tightening torque | 328 | | 9 Installation Notes | 329 | | 9.1 Below reservoir (standard) | 329 | | 9.2 Above reservoir | 330 | | 9.3 Reservoir installation | 331 | | 10 Displacement Limiter | 332 | | 10.1 Displacement limiter setting | 332 | **Technical Information** # **Series 45**Axial Piston Open Circuit Pumps ### **Revision history** ### Table of revisions | Date | Changed | Rev | |----------------|---|------| | January 2022 | Clarified importance of relief valve for system protection; added mounting flange technical data to frame F | 1201 | | April 2021 | Added K2 040C displacement performance graphs | 1104 | | June 2020 | Changed document number from 'BC00000019' and '520L0519' to 'BC152886483703' | 1103 | | October 2019 | Added K2 040C displacement technical data | 1001 | | July 2019 | Removed excess content | 0903 | | June 2019 | Removed M1 ports from K2 schematics and other minor changes | 0902 | | March 2018 | Minor updates | 0901 | | September 2017 | Corrected performance curves for K2 Pumps | 0812 | | August 2017 | Corrected typo | 0811 | | April 2017 | Update the TOC | 0810 | | March 2017 | add K2 Frame | 0809 | | July 2016 | Fan Drive Control configuration-corrected G and H model code tables | 0808 | | July 2016 | Fan Drive Control configuration-included G and H model code tables | 0807 | | June 2016 | Various edits - Fan Drive Control | 0806 | | April 2016 | Various edits - Fan Drive Control | 0805 | | March 2016 | Add Fan Drive Control | 0804 | | March 2015 | Add E Frame ETL control and Angle Sensor | НС | | October 2014 | Add ETL control and Angle Sensor | НВ | | July 2014 | Danfoss layout | НА | 2 | © Danfoss | January 2022 BC152886483703en-001201 ### **General Information** | Overview | 8 | |--|----| | Design | | | Benefits | | | Typical applications | | | The Series 45 product family | | | Load sensing open circuit system | | | Servo Control Orifice | | | Servo Control Orifice Principle | | | Servo Control Orifice Performance | | | Pacing Factor | | | Hydraulic Controls | | | Pressure compensated controls | | | Operation | | | Pressure compensated system characteristics | | | Typical applications for pressure compensated systems | | | Remote pressure compensated controls | | | Remote pressure compensated system characteristics | | | Typical applications for remote pressure compensated systems | | | Load sensing controls | | | LS control with bleed orifice | | | Integral PC function | | | Load sensing system characteristics | | | Electric Controls | | | Electric Proportional Controls (EPC) | | | PLUS+1° Compliance | | | Electric Proportional Control Principle | | | Electric Proportional Control Principle | | | Electric Proportional Control Characteristic – Normally Closed | | | Electric Proportional Control Characteristic – Normally Open | | | Electric On-Off Controls | | | PLUS+1 Compliance | | | Electric On-Off Control Principle | | | Electric On-Off Control Principle | | | Electric On-Off Control Response/Recovery | | | Electric On-Off Control Characteristic – Normally Closed | | | Electric On/Off Control Characteristic – Normally Open | | | Electric dump valve PC/LS controls | | | Electronic Torque Limiting Controls (ETL) | | | PLUS+1 Compliance | | | Electric Torque Limiting Control Principle | | | Electronic Torque Limiting Control Characteristic | | | Fan Drive Control (FDC) | | | PLUS+1 Compliance | | | Fan Drive Control Principle | | | Fan Drive Control System Characteristics | | | Unintended Applications for Fan Drive Control Systems | | | Fan Drive Control characteristic - Normally Closed | | | Solenoid data – Normally closed | | | Fan Drive Control configuration | | | NC Fan Drive Control 3D Views | | | Angle Sensor | | | PLUS+1 Compliance | | | Angle Sensor Principle | | | Angle Sensor Characteristics | | | J & F-Frame (45-90cc) Angle Sensor Identification Convention: | | | | | | E-Frame (100-147cc) Angle Sensor Identification Convention: | | | Angle sensor electrical specifications | | | Aligie Jelisoi Calibration | 40 | Frame K2 | Angle Sensor Functionality | 40 | |---|----| | Charge Pump Circuits | | | Example Circuit #1 | | | Example Circuit #2 | | | Operating parameters | | | Fluids | | | Viscosity | | | Temperature | | | Inlet pressure | | | Case pressure | | | Pressure ratings | | | Speed ratings | | | Duty cycle and pump life | | | Speed, flow, and inlet pressure | | | Design parameters | | | Installation | | | Filtration | | | Reservoir | | | Fluid velocity | | | Shaft loads | | | Bearing life | | | Mounting flange loads | | | Estimating overhung load moments | | | Auxiliary mounting pads | 49 | | Input shaft torque ratings | | | Understanding and minimizing system noise | | | Understanding and minimizing system instability | | | LS System Over-Signaling | | | Sizing equations | | | Design | | | Technical Specifications | | | Order Code | | | Performance K2-25C | | | Performance K2-30C | | | Performance K2-38C | | | Performance K2-40C | | | Performance K2-45C | | | Hydraulic Controls | | | Pressure Compensated Controls | | | Remote Pressure Compensated Controls | | | Load Sensing Pressure Compensated Controls | | | Load Sensing Control with Bleed Orifice / Pressure Compensated | | | Electric Controls | | | Connectors | | | Continuous Duty Operating Range | 68 | | Solenoid Data - Normally Closed | | | Solenoid Data - Normally Open | | | Normally Closed Electric On/Off with Pressure Compensation Controls | | | Normally Open Electric On/Off with Pressure Compensation Controls | | | Normally Closed Electric Proportional with Pressure Compensation Controls | | | Normally Open Electric Proportional with Pressure Compensation Controls | | | Normally Closed Fan Drive Control | | | Input Shafts | | | Installation DrawingsAxial Ported Endcap | | | Axial Ported Endcap O-ring Boss Ports Installation Dimensions | | | Radial Ported Endcap Split Flange Ports | | | Radial Ported Endcap O-ring Boss Ports | | | Tada Tortea Enacap o Ting 5000 Torto | | | | Radial Ported Endcap Installation Dimensions | | |----------------|--|-----| | | Front Mounting Flange - SAE-B two bolt | | | | Auxiliary Mounting Pads | 81 | | | SAE-A auxiliary mounting pad | 8 | | | SAE-B auxiliary mounting pad | 81 | | | SAE-A Fixed flange | 82 | | | Auxiliary Mounting Pad - Running Cover | | | | Electric solenoid, left side | 83 | | | Fan drive control | | | | Displacement Limiter | | | | | | | Frames L and K | | | | | Design | | | | Technical Specifications | | | | Order code | | | | Performance L25C | | | | Performance L30D | | | | Performance K38C | | | | Performance K45D | | | | Hydraulic Controls | | | | Pressure Compensated Controls | | | | Remote Pressure Compensated Controls | 96 | | | Load Sensing/Pressure Compensated Controls | 97 | | | Load Sensing Control with Bleed Orifice / Pressure Compensated | 98 | | | Electric Controls | 99 | | | Connector | 99 | | | Continuous Duty Operating Range | | | | Solenoid Data - Normally Closed | | | | Solenoid Data - Normally Open | | | | Normally Closed Electric On/Off with Pressure Compensation Controls | | | | Normally Open Electric On/Off with Pressure Compensation Controls | | | | Normally Closed Electric Proportional Controls with PC and LS Compensation | | | | Normally Open Electric Proportional Controls with PC and LS Compensation | | | | Input shafts | | | | Installation drawings | | | | Axial Ported Endcap | | | | Axial Ported Endcap Installation Dimensions | | | | Radial Ported Endcap Split Flange Ports | | | | Radial Ported Endcap O-ring Boss Ports | | | | Radial Ported Endcap Rear View | | | | Radial Ported Endcap Installation Dimensions | | | | Front Mounting Flange - SAE-B two bolt | | | | Auxiliary Mounting Pads | | | | | | | | SAE-A auxiliary mounting pad | | | | SAE-B auxiliary mounting pad | | | | Auxiliary Mounting Pad - Running Cover | | | | Electric Solenoid, Left Side | | | | Electric Solenoid, Right Side | | | | Displacement limiter | 113 | | Frame J | | | | | Design | 114 | | | Technical Specifications | | | | Order code | | | | Performance J45B | | | | Performance J51B | | | | Performance J60B | | | | Performance J65C | | | | Performance J75C | | | | Hydraulic Controls | ۱۵۱ | | | | | | Pressure Compensated Controls | 131 | |--|-----| | Remote Pressure Compensated Controls | | | Load sensing/Pressure compensated Controls | | | Load sensing Control with Bleed Orifice/ Pressure Compensated | | | Electric Controls | | | Connectors | | | Continuous Duty Operating Range | | | Solenoid Data - Normally Closed | | | Solenoid Data - Normally Closed | | | Fan Drive Control Solenoid Data - Normally Closed | | | Normally Closed Electric On/Off with Pressure Compensation Controls | | | | | | Normally Open Electric On/Off with Pressure Compensation Controls | | | Normally Closed Electric Proportional with Pressure Compensation Controls | | | Normally Open Electric Proportional with Pressure Compensation Controls | | | Normally Closed Electric Torque Limiting Control with Pressure Compensation Controls | | | Normally Closed Fan Drive Control | | | Input shafts | | | Installation drawings | | | Axial Ported Endcap | | | Axial Ported Endcap Installation Dimensions | | | Right Fan Drive Control | | | Radial Ported Endcap Split Flange Ports | | | Radial Ported Endcap Rear View | | | Radial Ported Endcap Installation Dimensions | | | Right Angle Sensor Position Installation Dimensions | | |
Front Mounting Flange | | | Auxiliary mounting pads | | | SAE-A auxiliary mounting pad (integrated) | | | SAE-A auxiliary mounting pad (non-integral) | | | SAE-B auxiliary mounting pad | | | SAE-C auxiliary mounting pad | | | Running cover | | | Radial Endcap Clockwise | | | Radial Endcap Counterclockwise | | | Axial Endcap Clockwise | | | Axial Endcap Counterclockwise | | | Displacement limiter | 158 | | | | | Design | | | Technical Specifications | 160 | | Order code | | | Performance F74B | 166 | | Performance F90C | | | Hydraulic Controls | | | Pressure Compensated Controls | | | Remote Pressure Compensated Controls | | | Load Sensing/Pressure Compensated Controls | | | Load Sensing Control with Bleed Orifice/Pressure Compensated | 170 | | Electric Controls | 171 | | Connectors | 171 | | Continuous Duty Operating Range | | | Solenoid Data - Normally Closed | | | Solenoid Data - Normally Open | | | Fan Drive Control Solenoid Data - Normally Closed | | | Normally Closed Electric On/Off with Pressure Compensation Controls | | | Normally Open Electric On/Off with Pressure Compensation Controls | | | Normally Closed Electric Proportional with Pressure Compensation Controls | | | Normally Open Electric Proportional with Pressure Compensation Controls | | | Normally Closed Electric Torque Limiting Control with Pressure Compensation Controls | 177 | Frame F Frame E | Normally Closed Fan Drive Control | 178 | |--|-----| | Input shafts | | | Installation drawings | | | Axial Ported Endcap | 180 | | Axial Ported Endcap Installation Dimensions | 180 | | Right Fan Drive Control | 181 | | Radial Ported Endcap Split Flange Ports | 181 | | Radial Ported Endcap Rear View | | | Radial Ported Endcap Installation Dimensions | | | Right Angle Sensor Position Installation Dimensions | | | Front Mounting Flange | | | Radial Endcap Clockwise | | | Radial Endcap Counterclockwise | 188 | | Axial Endcap Clockwise | | | Axial Endcap Counterclockwise | | | Displacement limiter | 188 | | Design | 190 | | Technical Specifications | 191 | | Order code | | | Performance E100B | 198 | | Performance E130B | 199 | | Performance E147C | | | Hydraulic Controls | | | Pressure Compensated Controls | | | Remote Pressure Compensated Controls | | | Load Sensing/Pressure Compensated | | | Load Sensing Control with Bleed Orifice/Pressure Compensated | | | Electric Controls | | | Connectors | | | Continuous Duty Operating Range | | | Solenoid Data - Normally Closed | | | Solenoid Data - Normally Open | | | Normally Closed Electric On/Off with Pressure Compensation Controls | | | Normally Open Electric On/Off with Pressure Compensation ControlsControls | | | Normally Closed Electric Proportional with Pressure Compensation Controls | | | Normally Open Electric Proportional with Pressure Compensation Controls | | | Normally Closed Electric Torque Limiting Control with Pressure Compensation Controls | | | Input shafts | | | Installation drawings | | | Axial Ported Endcap | | | Axial Ported Endcap Installation Dimensions | | | Radial Ported Endcap Installation Dimensions | 215 | | Right Angle Sensor Position Installation Dimensions | | | Radial Ported Endcap Rear View | | | Radial Ported Endcap Split Flange Ports | 217 | ### Overview Series 45 is a complete family of high performance variable displacement, axial piston pumps. Each frame is designed to exceed the demanding work function requirements of the mobile equipment marketplace. Each frame within the Series 45 family is uniquely designed to optimize performance, size, and cost. ### Design ### **High Performance** - Displacements from 25 cm³ 147 cm³ [1.53 8.97 in 3/rev] - Speeds up to 3600 rpm - Pressures up to 310 bar [4495 psi] - Variety of control system options including load sensing and pressure compensated ### **Latest Technology** - Customer-driven using quality function deployment (QFD) and design for manufacturability (DFM) techniques - Optimized design maximizes efficiency and quiet operation - Computer-modeled castings to optimize inlet conditions for maximum pump speed - Compact package size minimizing installation space requirements - Heavy-duty tapered roller bearings for long life - Single piece rigid housing to reduce noise and leak paths - Integrated controls for high speed response and system stability ### Reliability - Designed to rigorous standards - · Proven in both laboratory and field - Manufactured to rigid quality standards - Long service life - Significantly fewer parts - No gasket joints - Robust input shaft bearings to handle large external shaft loads - Integrated gauge ports for monitoring operating conditions ### **Benefits** ### **Reduced Installation Costs** - Through-drive capability for multi-circuit systems - Range of mounting flanges, shafts and porting options for ease of installation - Compact size minimizes installation space requirements - Help meet engine emission standards - Reduce engine size by managing power usage more effectively ### **Reduce Operating Costs** - Optimize machine power usage to maximize fuel economy - Simple design reduces service requirements - · Heavy duty taper roller shaft bearings provide long service life 8 | © Danfoss | January 2022 BC152886483703en-001201 ### **Increased Customer Satisfaction** - Reduced noise for operator comfort - High performance increases productivity ### **Reduced Heat Load on Cooling System** - High efficiency reduces hydraulic heat generation - Allows for smaller cooling packages ### **Typical applications** - Cranes - Telescopic handlers - Forklift trucks - Wheel loaders - Sweepers - Backhoe loaders - · Forestry and agricultural machinery - Fan drives - Paving Machines - · Mining Equipment - Mowers - Dozers - Drilling Machines - Mini-Excavators - Other Applications ### The Series 45 product family ### **Basic units** The series 45 family of open circuit, variable piston pumps, offers a range of displacements from 25 to 147 cm³/rev [1.53 to 8.97 in3/rev]. With maximum speeds up to 3600 rpm and continuous operating pressures up to 310 bar [4495 psi], product selection is easily tailored to the flow and pressure requirements of individual applications. ### General performance specifications | Pump | | Displacement | | Speed | | | Pressure | | | | Theoreti | Mounti | | |----------|--------|-----------------|-----------------|----------------------------|----------------------------|----------------------------|----------|------|------|------|------------------|--------|---| | | | | | Contin
uous | Max. | Min. | Cont. | | Max. | | (at rated speed) | | ng | | Frame | Model | cm ³ | in ³ | min ⁻¹
(rpm) | min ⁻¹
(rpm) | min ⁻¹
(rpm) | bar | psi | bar | psi | US
gal/min | l/min | Flange | | Frame L | L25C | 25 | 1.53 | 3200 | 3600 | 500 | 260 | 3770 | 350 | 5075 | 21.0 | 80.0 | SAE B -
2 bolt | | | L30D | 30 | 1.83 | 3200 | 3600 | 500 | 210 | 3045 | 300 | 4350 | 25.4 | 96.0 | SAE B -
2 bolt | | Frame K | K38C | 38 | 2.32 | 2650 | 2800 | 500 | 260 | 3770 | 350 | 5075 | 26.6 | 100.7 | SAE B -
2 bolt | | | K45D | 45 | 2.75 | 2650 | 2800 | 500 | 210 | 3045 | 300 | 4350 | 31.5 | 119.3 | SAE B -
2 bolt | | Frame K2 | K2-25C | 25 | 1.53 | 3450 | 3750 | 500 | 260 | 3771 | 350 | 5076 | 22.8 | 86.3 | SAE B -
2 bolt | | | K2-30C | 30 | 1.83 | 3200 | 3450 | 500 | | | | | 25.4 | 96.0 | SAE B -
2 bolt | | | K2-38C | 38 | 2.32 | 2900 | 3050 | 500 | | | | | 29.1 | 110.2 | SAE B -
2 bolt | | | K2-40C | 40 | 2.44 | 3100 | 3200 | 500 | | | | | 34.5 | 124 | SAE B -
2 bolt | | | K2-45C | 45 | 2.75 | 2900 | 3050 | 500 | | | | | 34.5 | 130.5 | SAE B -
2 bolt | | Frame J | J45B | 45 | 2.75 | 2800 | 3360 | 500 | 310 | 4495 | 400 | 5800 | 33.3 | 126.0 | SAE B 2-bolt
SAE C 2
and 4-
bolt | | | J51B | 51 | 3.11 | 2700 | 3240 | 500 | 310 | 4495 | 400 | 5800 | 36.4 | 137.7 | SAE B 2-
bolt
SAE C 2
and 4-
bolt | | | J60B | 60 | 3.66 | 2600 | 3120 | 500 | 310 | 4495 | 400 | 5800 | 41.2 | 156.0 | SAE B 2-
bolt
SAE C 2
and 4-
bolt | | | J65C | 65 | 3.97 | 2500 | 3000 | 500 | 260 | 3770 | 350 | 5075 | 42.9 | 162.6 | SAE B 2-
bolt
SAE C 2
and 4-
bolt | | | J75C | 75 | 4.58 | 2400 | 2880 | 500 | 260 | 3770 | 350 | 5075 | 47.5 | 180.0 | SAE B 2-
bolt
SAE C 2
and 4-
bolt | | Frame F | F74B | 74 | 4.52 | 2400 | 2800 | 500 | 310 | 4495 | 400 | 5800 | 46.9 | 177.6 | SAE B 2-
bolt
SAE C 4-
bolt | | | F90C | 90 | 5.49 | 2200 | 2600 | 500 | 260 | 3770 | 350 | 5075 | 52.3 | 198 | SAE B 2-
bolt
SAE C 4-
bol | General performance specifications (continued) | Pump | | Displacement | | Speed | | | Pressure | | | | Theoretical flow | | Mounti
ng | |---------|-------|-----------------|-----------------|----------------------------|----------------------------|----------------------------|----------|------|------|------|------------------|------------------|------------------| | | | | | Contin
uous | Max. | Min. | Cont. | | Max. | Max. | | (at rated speed) | | | Frame | Model | cm ³ | in ³ | min ⁻¹
(rpm) | min ⁻¹
(rpm) | min ⁻¹
(rpm) | bar | psi | bar | psi | US
gal/min | I/min | Flange | | Frame E | E100B | 100 | 6.10 | 2450 | 2880 | 500 | 310 | 4495 | 400 | 5800 | 64.7 | 245.0 | SAE C 4-
bolt | | | E130B | 130 | 7.93 | 2200 | 2600 | 500 | 310 | 4495 | 400 | 5800 | 75.5 | 286.0 | SAE C 4-
bolt | | | E147C | 147 | 8.97 | 2100 | 2475 | 500 | 260 | 3770 | 350 | 5075 | 81.5 | 308.7 | SAE C 4-
bolt | ### Load sensing open circuit system The pump receives fluid directly from the reservoir through the inlet line. A screen in the inlet line protects the pump from large contaminants. The pump outlet feeds directional control valves such as PVG-32's, hydraulic integrated circuits (HIC), and other types of control valves. The PVG valve directs pump flow to cylinders, motors and other work functions. A heat
exchanger cools the fluid returning from the valve. A filter cleans the fluid before it returns to the reservoir. Flow in the circuit determines the speed of the actuators. The position of the PVG valve determines the flow demand. A hydraulic pressure signal (LS signal) communicates demand to the pump control. The pump control monitors the pressure differential between pump outlet and the LS signal, and regulates servo pressure to control the swashplate angle. Swashplate angle determines pump flow. Actuator load determines system pressure. The pump control monitors system pressure and will decrease the swashplate angle to reduce flow if system pressure reaches the PC setting. A secondary system relief valve in the PVG valve acts as a back-up to control system pressure. © Danfoss | January 2022 BC152886483703en-001201 | 11 ### Pictorial circuit diagram ### **Servo Control Orifice** ### **Servo Control Orifice Principle** Series 45 controls offer an optional servo control orifice (not available with Pressure Compensation only Controls) available to aid in tuning system performance. The optional servo control orifice restricts flow to and from the servo system in the pump, effectively pacing the motion of the servo system. ### **Servo Control Orifice Performance** The use of the Servo Control Orifice will provide additional pacing to the pump, while the response of the pump to pressure spikes remains unaffected. The Pressure Compensation Function response and recovery, as well as the Load Sense Function response and recovery are shown below, and outline the relative impact in response and recovery of the Servo Control Orifices. Note that these graphs are meant as a generic comparison only, and that unique effects on response and recovery behavior for each specific frame are shown later in this section. © Danfoss | January 2022 BC152886483703en-001201 | 13 We recommend that systems experiencing instability use a Servo Control Orifice. Start with the largest size orifice available, and work down to the smaller size until the system is satisfactorily tuned. All Fan-Drive systems should start with a 0.8mm Servo Control Orifice if possible. Systems including motors are more likely to require the Servo Control Orifice option. ### **Pacing Factor** Use of a Servo Control Orifice adds a pacing factor to each Series 45 Frame, impacting the behavior of the pumps reactivity. This pacing factor can be multiplied by the specific Frame/Displacement/Control selection's response and recovery times, to determine the final paced response and recovery times. Unique response and recovery times can be found in each frame-specific chapter, in the desired control section. The paced response and recovery relationship is shown below. Response (Damped)= Response (Specific Disp.Control) *Pacing Factor Recovery (Damped) = Recovery (Specific Disp.Control) *Pacing Factor Pacing Factors are unique to each orifice size, and can impact each frame differently. Below are the Pacing Factors for each Servo Control Orifice Size by frame. | Frame | Pacing Factors - Servo Control Orifice | | | | | | | | | | | |-----------|--|-----------------|-------------|-------------|------------------------------|-------------|-------------|-------------|--|--|--| | | 1.0 mm Servo | Control Orifice | | | 0.8 mm Servo Control Orifice | | | | | | | | | PC Response | PC Recovery | LS Response | LS Recovery | PC Response | PC Recovery | LS Response | LS Recovery | | | | | E-Frame* | 1 | 2.3 | 2.0 | 2.0 | 1 | 3.2 | 2.6 | 2.6 | | | | | F-Frame* | (No Effect) | 2.3 | 2.0 | 2.0 | (No Effect) | 3.2 | 2.6 | 2.6 | | | | | J-Frame* | | 2.3 | 2.0 | 2.0 | | 3.2 | 2.6 | 2.6 | | | | | K2-Frame | | 2.3 | 2.0 | 2.0 | | 3.2 | 2.6 | 2.6 | | | | | K-Frame** | | 2.3 | 2.3 | 2.3 | | 3.7 | 3.1 | 3.1 | | | | | L-Frame** | | 2.3 | 2.3 | 2.3 |] | 3.7 | 3.1 | 3.1 | | | | ^{*} PC Response from 160 bar to 210 bar, PC Recovery from 210 bar to 160 bar at 1800 rpm: LS Response from 230 bar to 30 bar, LS Recovery from 30 bar to 230 bar at 1800 rpm. ### **Hydraulic Controls** ### **Pressure compensated controls** ### Operation The PC control maintains constant system pressure in the hydraulic circuit by varying the output flow of the pump. Used with a closed center control valve, the pump remains in high pressure standby mode at the PC setting with zero flow until the function is actuated. This condition is often called a **dead head** condition. ### Typical operating curve ^{** **} PC Response from 160 bar to 210 bar, PC Recovery from 210 bar to 160 bar at 1800 rpm: LS Response from 160 bar to 20 bar, LS Recovery from 20 bar to 160 bar at 1800 rpm. ### Simple closed-center circuit Once the closed center valve is opened, the PC control senses the immediate drop in system pressure and increases pump flow by increasing the swashplate angle. The pump continues to increase flow until system pressure reaches the PC setting. If system pressure exceeds the PC setting, the PC control reduces the swashplate angle to maintain system pressure by reducing flow. The PC control continues to monitor system pressure and changes swashplate angle to match the output flow with the work function pressure requirements. If the demand for flow exceeds the capacity of the pump, the PC control directs the pump to maximum displacement. In this condition, actual system pressure depends on the actuator load. Each section includes control schematic diagrams, setting ranges, and response / recovery times for each control available. *Response* is the time (in milliseconds) for the pump to reach zero displacement when commanded by the control. *Recovery* is the time (in milliseconds) for the pump to reach full displacement when commanded by the control. Actual times can vary depending on application conditions. A relief valve is required to be installed in the pump outlet for additional system protection. Failure to install a relief valve may lead to system damage and/or injury. ### Pressure compensated system characteristics - Constant pressure and variable flow - · High pressure standby mode when flow is not needed - · System flow adjusts to meet system requirements - Single pump can provide flow to multiple work functions - Quick response to system flow and pressure requirements ### Typical applications for pressure compensated systems - Constant force cylinders (bailers, compactors, refuse trucks) - On/off fan drives - Drill rigs - Sweepers - Trenchers ### Remote pressure compensated controls The remote PC control is a two-stage control that allows multiple PC settings. Remote PC controls are commonly used in applications requiring low and high pressure PC operation. ### Typical operating curve ### Closed center circuit with remote PC The remote PC control uses a pilot line connected to an external hydraulic valve. The external valve changes pressure in the pilot line, causing the PC control to operate at a lower pressure. When the pilot line is vented to reservoir, the pump maintains pressure at the load sense setting. When pilot flow is blocked, the pump maintains pressure at the PC setting. An on-off solenoid valve can be used in the pilot line to create a low-pressure standby mode. A proportional solenoid valve, coupled with a microprocessor control, can produce an infinite range of operating pressures between the low pressure standby setting and the PC setting. ### Warning A relief valve is required to be installed in the pump outlet for additional system protection. Failure to install a relief valve may lead to system damage and/or injury. Each section includes control schematic diagrams, setting ranges, and response / recovery times for each control available. Response is the time (in milliseconds) for the pump to reach zero displacement when commanded by the control. Recovery is the time (in milliseconds) for the pump to reach full displacement when commanded by the control. Actual times can vary depending on application conditions. Size the external valve and plumbing for a pilot flow of 3.8 l/min [1 US gal/min]. ### Remote pressure compensated system characteristics - Constant pressure and variable flow - High or low pressure standby mode when flow is not needed - System flow adjusts to meet system requirements - Single pump can provide flow to multiple work functions - Quick response to system flow and pressure requirements ### Typical applications for remote pressure compensated systems - · Modulating fan drives - Anti-stall control with engine speed feedback - Front wheel assist - Road rollers - Combine harvesters - Wood chippers ### Load sensing controls ### Operation The LS control matches system requirements for both pressure and flow in the circuit regardless of the working pressure. Used with a closed center control valve, the pump remains in low-pressure standby mode with zero flow until the valve is opened. The LS setting determines standby pressure. ### Typical operating curve ### Load sensing circuit Most load sensing systems use parallel, closed center, control valves with special porting that allows the highest work function pressure (LS signal) to feed back to the LS control. Margin pressure is the difference between system pressure and the LS signal pressure. The LS control monitors margin pressure to read system demand. A drop in margin pressure means the system needs more flow. A rise in margin pressure tells the LS control to decrease flow. ### LS control with bleed orifice The load sense signal line requires a bleed orifice to prevent high-pressure lockup of the pump control. Most load-sensing control valves include this orifice. An optional internal bleed orifice is available, for use with control valves that do not internally bleed the LS signal to tank. ### Integral PC function The LS control also performs as a PC control, decreasing pump flow when system pressure reaches the PC setting. The pressure compensating function has priority over the load
sensing function. ### Warning A relief valve is required to be installed in the pump outlet for additional system protection. Failure to install a relief valve may lead to system damage and/or injury. ### Load sensing system characteristics - Variable pressure and flow - Low pressure standby mode when flow is not needed - System flow adjusted to meet system requirements - Lower torque requirements during engine start-up - Single pump can supply flow and regulate pressure for multiple circuits - Quick response to system flow and pressure requirements ### **Electric Controls** ### **Electric Proportional Controls (EPC)** ### PLUS+1° Compliance All Series 45 Electric controls have met and passed the Danfoss PLUS+1° compliance standard testing, and as such, this Series 45 control is PLUS+1° compliant. PLUS+1° compliance blocks are available on the Danfoss website, within the PLUS+1° Guide section. ### **Electric Proportional Control Principle** The Electric Proportional Control consists of a proportional solenoid integrated into a Remote Pressure Compensated control. This control allows the pump to be operated at any pressure limit between the Load Sense and Pressure Compensation settings by varying the current sent to the solenoid. Reference individual frame sections for the margin (LS) setting vs low pressure standby relationship. Electric proportional controls have a unique relationship between margin (LS) setting and low pressure standby. This relationship is available in the electric proportional controls section for each frame. For fan-drive systems, and systems with motors, use a minimum 15bar LS setting to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20bar LS setting is recommended as a starting point for all new applications. ### Electric Proportional Control Response/Recovery S45 Electric Proportional Controls require the use of a servo control orifice, and are available with two possible servo control orifice options. The servo control orifice is used to enhance system stability, as well as dampen the pump reactiveness. A smaller orifice diameter will add dampening to the pump reactiveness, while a larger orifice will allow quicker pump reaction. Fan-Drive applications, as well as systems with the pump supplying motors, are recommended to use the 0.8mm diameter orifice to enhance system stability. | Module "G" Options for Electric Proportional Controls | | | | | | | | | | |---|---------------------|---------------------|--|--|--|--|--|--|--| | Frame | "E" - 0.8mm Orifice | "F" - 1.0mm Orifice | | | | | | | | | All Frames | • | • | | | | | | | | Specific Electric Proportional Control Response/Recovery times are shown for the available servo control orifice options in the control section within each specific frame section. These times represent the response from 100bar to 200bar, and recovery from 200bar to 100bar. As the upper pressure approaches the PC setting, the PC function will begin to assist in clipping pressure overshoots during the pump's response, and will decrease the response times of the pump to equal those of the PC response. ### Electric Proportional Control Pressure vs. Flow Characteristic The Electric Proportional Controls continuous duty operating temperature range is shown below; this guideline should be followed as well as the maximum current limitations. Note that rated voltage refers to either a 12V or 24V coil. Under high temperature conditions, current required to operate the solenoid increases. © Danfoss | January 2022 ### Electric Proportional Control Characteristic - Normally Closed When an electric current is sent to the Normally Closed configuration control, the pump pressure decreases proportional to an increase in current. When the load in the system changes, the pump will adjust its displacement to maintain the pressure demanded by the controlling current. This control is especially useful for fan-drives, due to the direct relationship between fan-speed and pump pressure. Due to the nature of Electric Proportional Controls, the relationship between current and pump pressure is unique for each individual PC/LS pressure setting combination. The relationship between different PC settings and different LS settings on the Pressure vs. Current Characteristic curve are shown below. The hydraulic schematic for the Normally Closed Electric Proportional control is shown below as well. ### Operating Pressure vs. Input Current (N.C. EPC) ### Solenoid Data - Normally Closed | Voltage | 12V | 24V | |-----------------|---------|--------| | Maximum Current | 1800 mA | 920 mA | | Inrush Current | 1700 mA | 800 mA | 20 | © Danfoss | January 2022 Solenoid Data - Normally Closed (continued) | Voltage | 12V | 24V | | | |---|--|-------|--|--| | Coil Resistance @ 20°C [70°F] | 7.1 Ω 28.5 Ω | | | | | PWM Range | 200-300 Hz | | | | | PWM Frequency (preferred) | 250 Hz | | | | | IP Rating (IEC 60529 DIN 40050-9) | IP67 | IP67 | | | | IP Rating (IEC 60529 DIN 40050-9) with mating connector | IP69K | IP69K | | | | Operating Temperature | Consistent with Pump Limits:
-40°C (-40°F) to 104°C (220°F) | | | | The available Normally Closed Electric Proportional Controls for the Series 45 are shown below. The allowable Pressure Compensator (PC) and Load Sense (LS) pressure settings are provided for each frame in their respective sections. | Electric | Electric Proportional Controls Options – Normally Closed | | | Frame | | | | | | | | |----------|--|---|---|-------|---|---|---|--|--|--|--| | Code | Description | L | K | K2 | J | F | E | | | | | | АН | Electric Proportional Pressure Control w/Pressure Comp. (NC, 12VDC) Left | | | • | • | • | • | | | | | | AL | Electric Proportional Pressure Control w/Pressure Comp. (NC, 24VDC) Left | | | • | • | • | • | | | | | | AV | Electric Proportional Pressure Control w/Pressure Comp. (NC, 12VDC) Right | | | | • | • | • | | | | | | AK | Electric Proportional Pressure Control w/Pressure Comp. (NC, 24VDC) Right | | | | • | • | • | | | | | | ВН | Electric Proportional Pressure Control w/Pressure Comp. (NC, 12VDC) [>280 bar] Left | | | | • | • | • | | | | | | BL | Electric Proportional Pressure Control w/Pressure Comp. (NC, 24VDC) [>280 bar] Left | | | | • | • | • | | | | | | ВМ | Electric Proportional Pressure Control w/Pressure Comp. (NC, 12VDC) [>280 bar] Right | | | | • | • | | | | | | | BK | Electric Proportional Pressure Control w/Pressure Comp. (NC, 24VDC) [>280 bar] Right | | | | • | • | • | | | | | | EM | Electric Proportional Pressure Control w/Pressure Comp. (NC, 12VDC) | • | • | | | | | | | | | | EN | Electric Proportional Pressure Control w/Pressure Comp. (NC, 24VDC) | • | • | | | | | | | | | ### Notes: - 1. Left = E-Frame: CW Only, F-Frame: CW Only, J-frame: CW Axial, CCW Radial - 2. Right = E-Frame: CCW Only, F-Frame: CCW Only, J-frame: CCW Axial, CW Radial - 3. K/L Frame Controls are not rotation dependent - 4. K2 Frame electric controls are limited only for Left orientation and up to 260 Bar ### Electric Proportional Control Characteristic – Normally Open When an electric current is sent to the normally open configuration control, the pump pressure increases proportional to an increase in current. When the load in the system changes, the pump will adjust its displacement to maintain the pressure demanded by the controlling current. This control is especially useful for fan-drives, due to the direct relationship between fan-speed and pump pressure. Due to the nature of Electric Proportional Controls, the relationship between current and pump pressure is unique for each individual PC/LS pressure setting combination. The relationship between different PC settings and different LS settings on the Pressure vs. Current Characteristic curve are shown below. The hydraulic schematic for the Normally Open Electric Proportional control is shown below as well. Operating Pressure vs. Input Current (N.O. EPC) ### Solenoid Data - Normally Open | Voltage | 12V | 24V | | | |---|--|--------|--|--| | Maximum Current | 1500 mA | 665 mA | | | | Inrush Current | 1700 mA 800 mA | | | | | Coil Resistance @ 20°C [70°F] | 7.1 Ω | 28.5 Ω | | | | PWM Range | 200-300 Hz | | | | | PWM Frequency (preferred) | 250 Hz | | | | | IP Rating (IEC 60529 DIN 40050-9) | IP67 | IP67 | | | | IP Rating (IEC 60529 DIN 40050-9) with mating connector | IP69K IP69K | | | | | Operating Temperature | Consistent with Pump Limits:
-40°C (-40°F) to 104°C (220°F) | | | | The available Normally Open Electric Proportional Controls for the Series 45 are shown below. The allowable Pressure Compensator (PC) and Load Sense (LS) pressure settings are provided for each frame in their respective sections. Note that for Electric Proportional Controls, the Load Sense setting describes the Low Pressure Standby value, not margin. | Electric Proportional Controls Options – Normally Open | | Fran | Frame | | | | | | | |--|---|------|-------|----|---|---|---|--|--| | Code | Description | L | K | K2 | J | F | E | | | | AX | Electric Proportional Pressure Control w/Pressure Comp. (NO, 12VDC) Left | | | • | • | • | • | | | | CL | Electric Proportional Pressure Control w/Pressure Comp. (NO, 24VDC) Left | | | • | • | • | • | | | | AW | Electric Proportional Pressure Control w/Pressure Comp. (NO, 12VDC) Right | | | | • | • | • | | | | СК | Electric Proportional Pressure Control w/Pressure Comp. (NO, 24VDC) Right | | | | • | • | • | | | | ВХ | Electric
Proportional Pressure Control w/Pressure Comp. (NO, 12VDC) [>280 bar] Left | | | | • | • | • | | | 22 | © Danfoss | January 2022 | Electric Proportional Controls Options – Normally Open | | Frame | | | | | | | |--|--|-------|---|--|---|---|---|--| | DL | Electric Proportional Pressure Control w/Pressure Comp. (NO, 24VDC) [>280 bar] Left | | | | • | • | • | | | BW | Electric Proportional Pressure Control w/Pressure Comp. (NO, 12VDC) [>280 bar] Right | | | | • | • | • | | | DK | Electric Proportional Pressure Control w/Pressure Comp. (NO, 24VDC) [>280 bar] Right | | | | • | • | • | | | EK | Electric Proportional Pressure Control w/Pressure Comp. (NO, 12VDC) | • | • | | | | | | | EL | Electric Proportional Pressure Control w/Pressure Comp. (NO, 24VDC) | • | • | | | | | | ### Notes: - 1. Left = E-Frame: CW Only, F-Frame: CW Only, J-frame: CW Axial, CCW Radial - 2. Right = E-Frame: CCW Only, F-Frame: CCW Only, J-frame: CCW Axial, CW Radial - 3. K/L Frame Controls are not rotation dependent - 4. K2 Frame electric controls are limited only for Left orientation and up to 260 Bar ### **Electric On-Off Controls** ### PLUS+1 Compliance All Series 45 Electric controls have met and passed the Danfoss PLUS+1 compliance standard testing, and as such, this Series 45 control is PLUS+1 compliant. PLUS+1 compliance blocks are available on the Danfoss website, within the PLUS+1 Guide section. ### Electric On-Off Control Principle The Electric On/Off Control consists of an On/Off solenoid integrated into a Remote Pressure Compensated control. This control allows the pump to be operated at either the Load Sense pressure setting when "On", or the Pressure Compensation pressure setting when "Off". For fan-drive systems, and systems with motors, use a minimum 15bar LS setting to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20bar LS setting is recommended as a starting point for all new applications. ### Electric On-Off Control Response/Recovery S45 Electric On/Off Controls are available with two servo control orifice options, as well as without an orifice. The servo control orifice is used to enhance system stability, as well as dampen the pump reactiveness. A smaller orifice diameter will add dampening to the pump reactiveness, while a larger orifice will allow quicker pump reaction. | Module "G" Opt | ions for Electric On/Off Control: | 5 | | |----------------|-----------------------------------|---------------------|------------------| | Frame | "E" - 0.8mm Orifice | "F" - 1.0mm Orifice | "N" - No Orifice | | All Frames | • | • | • | Specific Electric On/Off Control Response/Recovery times are shown for the available servo control orifice options in the control section within each specific frame section. These times represent the response from 75% of rated continuous pressure to 100% of rated continuous pressure, and recovery from 100% of rated continuous pressure to 75% of rated continuous pressure for N.C. configuration per SAE J745 (viceversa for N.O). As the system pressure approaches the PC setting, the PC function will begin to assist in clipping pressure overshoots during the pump's response, and will decrease the response times of the pump to equal those of the PC response. ### Electric On-Off Control Performance vs. Ambient Temperature Characteristic The Electric On/Off Controls continuous duty operating temperature range is shown below; this guideline should be followed as well as the maximum current limitations. Note that rated voltage refers to either a 12V or 24V coil. Under high temperature conditions the PWM duty cycle to operate the solenoid increases. 24 | © Danfoss | January 2022 ### Electric On-Off Control Characteristic - Normally Closed The normally closed configuration On/Off control directs the pump to its Pressure Compensation pressure setting when no current is applied. When the required electric current is sent to the normally closed configuration control the pump pressure decreases to the Low-Pressure Standby setting. This control does not have Load Sense functionality, but rather acts as a Pressure Compensation control when not energized, or is directed to its low-pressure standby when energized. This control is especially useful for machine startups, as the pump can be directed to its Low-Pressure Standby setting during startup to reduce the load on engine starters. The available Normally Closed Electric On/Off Controls for the Series 45 are shown below. The allowable Pressure Compensator (PC) and Load Sense (LS) pressure settings are provided for each frame in their respective sections. | Electric | Electric On/Off Controls Options – Normally Closed | | me | ne | | | | | | |----------|---|---|----|----|---|---|---|--|--| | Code | Description | L | К | K2 | J | F | E | | | | AR | Electric On/Off Pressure Control w/Pressure Comp. (NC,12VDC)
Left | | | • | • | • | • | | | | CR | Electric On/Off Pressure Control w/Pressure Comp. (NC,24VDC)
Left | | | • | • | • | • | | | | AG | Electric On/Off Pressure Control w/Pressure Comp. (NC,12VDC) Right | | | | • | • | • | | | | AY | Electric On/Off Pressure Control w/Pressure Comp. (NC,24VDC)
Right | | | | • | • | • | | | | BR | Electric On/Off Pressure Control w/Pressure Comp. (NC,12VDC) [>280 bar] Left | | | | • | • | • | | | | DR | Electric On/Off Pressure Control w/Pressure Comp. (NC,24VDC) [>280 bar] Left | | | | • | • | • | | | | BE | Electric On/Off Pressure Control w/Pressure Comp. (NC,12VDC) [>280 bar] Right | | | | • | • | • | | | | BG | Electric On/Off Pressure Control w/Pressure Comp. (NC,24VDC) [>280 bar] Right | | | | • | • | • | | | | EB | Electric On/Off Pressure Control w/Pressure Comp. (NC,12VDC) | • | • | | | | | | | | EE | Electric On/Off Pressure Control w/Pressure Comp. (NC,24VDC) | • | • | | | | | | | Notes: - 1. Left = E-Frame: CW Only, F-Frame: CW Only, J-frame: CW Axial, CCW Radial - 2. Right = E-Frame: CCW Only, F-Frame: CCW Only, J-frame: CCW Axial, CW Radial - 3. K/L Frame Controls are not rotation dependent - 4. K2 Frame electric controls are limited only for Left orientation and up to 260 Bar ### Electric On/Off Control Characteristic - Normally Open The Normally Open configuration On/Off control directs the pump to its Low-Pressure Standby setting when no current is applied. When the required electric current (end current) is sent to the Normally Open configuration control, the pump pressure increases to the Pressure Compensation pressure setting. This control does not have Load Sense functionality, but rather acts as a Pressure Compensation control when energized, or is directed to its Low-Pressure Standby when de-energized. This control is especially useful for machine startups, as the pump can be directed to its Low Pressure Standby setting during startup to reduce the load on engine starters. Solenoid Data - Normally Open | Voltage | 12V | 24V | | | |---|--|--------|--|--| | Maximum Current | 1500 mA | 665 mA | | | | Inrush Current | 1700 mA | 800 mA | | | | Coil Resistance @ 20°C [70°F] | 7.1 Ω | 28.5 Ω | | | | PWM Range | 200-300 Hz | | | | | PWM Frequency (preferred) | 250 Hz | | | | | IP Rating (IEC 60529 DIN 40050-9) | IP67 | IP67 | | | | IP Rating (IEC 60529 DIN 40050-9) with mating connector | IP69K | IP69K | | | | Operating Temperature | Consistent with Pump Limits:
-40°C (-40°F) to 104°C (220°F) | | | | The available Normally Open Electric On/Off Controls for the Series 45 Frame E are shown below, with the allowable Pressure Compensator (PC) pressure range provided for each control. All Electric On/Off Controls are available with the 10-40bar Load Sense (LS) setting range. | Electric On/Off Controls Options – Normally Open | | Fran | Frame | | | | | | | |--|---|------|-------|----|---|---|---|--|--| | Code | Description | L | К | K2 | J | F | Е | | | | AN | Electric On/Off Pressure Control w/Pressure Comp. (NO,12VDC)
Left | | | • | • | • | • | | | | CN | Electric On/Off Pressure Control w/Pressure Comp. (NO,24VDC)
Left | | | • | • | • | • | | | | AF | Electric On/Off Pressure Control w/Pressure Comp. (NO,12VDC)
Right | | | | • | • | • | | | | AT | Electric On/Off Pressure Control w/Pressure Comp. (NO,24VDC) Right | | | | • | • | • | | | | BN | Electric On/Off Pressure Control w/Pressure Comp. (NO,12VDC) [>280 bar] Left | | | | • | • | • | | | | DN | Electric On/Off Pressure Control w/Pressure Comp. (NO,24VDC) [>280 bar] Left | | | | • | • | • | | | | BF | Electric On/Off Pressure Control w/Pressure Comp. (NO,12VDC) [>280 bar] Right | | | | • | • | • | | | | DF | Electric On/Off Pressure Control w/Pressure Comp. (NO,24VDC) [>280 bar] Right | | | | • | • | • | | | | EA | Electric On/Off Pressure Control w/Pressure Comp. (NO,12VDC) | • | • | | | | | | | | EG | Electric On/Off Pressure Control w/Pressure Comp. (NO,24VDC) | • | | | | | | | | 26 | © Danfoss | January 2022 BC152886483703en-001201 #### Notes: - 1. Left = E-Frame: CW Only, F-Frame: CW Only, J-frame: CW Axial, CCW Radial - 2. Right = E-Frame: CCW Only, F-Frame: CCW Only, J-frame: CCW Axial, CW Radial - 3. K/L Frame Controls are not rotation dependent - 4. K2 Frame electric controls are limited only for Left orientation and up to 260 Bar #### **Electric dump valve PC/LS controls** The electric dump valve pressure-compensated/load sense control allows the pump to operate as a PC/LS type control under normal operating conditions. The solenoid dump valve overrides the LS control, allowing the pump to operate in a Low-Pressure Standby
mode. This function provides reduced horsepower and torque loss in certain situations. It may be particularly useful to reduce loads on a system during engine start. When closed, the solenoid valve allows the control to act as a PC/LS control. When open, the solenoid valve allows flow from the incoming load sense pressure to dump to case. This reduces the pressure in the LS spring cavity, shifting the LS spool, and allows the pump to de-stroke to the Low-Pressure Standby condition. This control is for applications needing a PC/LS control with the ability to switch to Low-Pressure Standby electronically. The solenoid valve is available in a normally closed and open configuration. For high cycling or power management applications, ensure to limit margin pressures to 60 bar or less for optimal control component life. Refer to LS System Over-Signaling on page 50 for more details. Electric Dump Control (frames E, F and J) # **Electronic Torque Limiting Controls (ETL)** #### PLUS+1 Compliance All controls for this product have met and passed the Danfoss PLUS+1* compliance standard testing, and as such, this product control is PLUS+1* Compliant. PLUS+1* compliance blocks (software) are available on the Danfoss website, | © Danfoss | January 2022 ### **Electric Torque Limiting Control Principle** The Electronic Torque Limiting control consists of a normally closed proportional relief valve (PRV) integrated into a Pressure Compensated/Load Sensing control. This control operates as a PC/LS control, with the additional ability to limit load sense pressure using the integrated PRV by varying the current to the solenoid. When combined with an angle sensor, this control allows for a PC/LS control with electronic torque limiting. *J-frame pump with integrated ETL control* Pump torque consumption is a function of pump outlet pressure, pump displacement, and pump mechanical efficiency. When pump mechanical efficiency is considered constant, the pump torque can be limited when pump displacement is known and pump pressure is controlled. As pump displacement increases, the pump outlet pressure can be limited using the PRV to result in a constant torque limit. Pump outlet pressure is equal to the load sense pressure, which is limited with the PRV, plus the margin pressure setting of the pump. $$Torque = \frac{Pump\ Outlet\ Pressure\ (bar)*Pump\ Displacement\ (\frac{cc}{rev})}{62.8*Pump\ Mechanical\ Efficiency\ (\%)}$$ 28 | © Danfoss | January 2022 ### Electronic Torque Limiting Control Characteristic The Electronic Torque Limiting control allows users to limit pump torque consumption electronically by combining a pressure limiting PRV and angle sensor. This torque limit can be changed with varying engine speeds (as shown in the Electronic Torque Limiting graph below), allowing the use of full engine torque at all engine speeds and increasing machine productivity. A microcontroller is required to store engine torque vs speed, receive the pump angle sensor signal, and then calculate and output the pump outlet pressure limit. The basic torque limiting control logic for a single engine speed is shown below. Danfoss offers a PLUS+1 subsystem application block for the Electronic Torque Limiting control option in combination with keyed MC012-112 microcontroller hardware. The part number for the keyed MC012-112 microcontroller is 11157484. Refer to graph *Operating Pressure vs. Input Current (N.C. EPC)* on page 20 for pressure vs. current information. #### Fan Drive Control (FDC) # PLUS+1 Compliance All Series 45 Electric controls have met and passed the Danfoss PLUS+1 compliance standard testing, and as such, this Series 45 control is PLUS+1 compliant. PLUS+1 compliance blocks (software) are available on the Danfoss website, within the PLUS+1 Guide section. ### Fan Drive Control Principle The Fan Drive Control is a unique electrically actuated pressure control solution that consists of a normally closed proportional solenoid and one dual diameter spool sliding in the control housing. System pressure acts on an area between the two spool diameters of the spool lands. This hydraulic force is balanced with forces of springs and the solenoid when the spool is in the metering position. When no current is sent to the solenoid it operates the pump at or below the PC setting which is adjusted mechanically with the adjustor screw and lock nut. Increasing the control current proportionally reduces the pump's outlet pressure until a minimum standby pressure is reached. Control Block 12V and 24V The minimum system pressure is given by swashplate moments of the pump and by servo system leakages which produce a pressure drop across the control. In addition, fan motor type and fan inertia impact minimum system pressure. The Normally Closed Fan Drive Control coupled with a microprocessor allows the pump to operate at an infinite range of operating pressures between a minimum system pressure and PC setting. A relief valve is required to be installed in the pump outlet for additional system protection. Failure to install a relief valve may lead to system damage and/or injury. #### Warning The Fan Drive Control is intended for fan drive systems only! Use in other systems could result in system component damage or unintended machine movement. The Fan Drive Control is not intended to serve at the primary system pressure relief. Loss of the input signal to this control will cause the pump to produce maximum flow. ### Fan Drive Control System Characteristics - Constant pressure and variable flow - High or low system pressure mode based on fan cooling demand - System flow adjusts to meet system requirements ### **Unintended Applications for Fan Drive Control Systems** - Applications with frequent PC events (system pressure overshoots) - Adjustable Load Sensing systems Fan Drive Control Cross Section ### Fan Drive Control characteristic - Normally Closed When an electric current is sent to the Normally Closed Fan Drive Control, pump outlet pressure decreases proportionally to the increase in currentt. When the load in the system changes, the pump will adjust its displacement to maintain the pressure demanded by the controlling current. This predictable control is especially useful for fan-drive systems, due to the direct relationship between fan-speed and pump pressure. Due to the nature of the Fan Drive Control, the relationship between current and pump pressure is unique for each individual PC pressure setting combination. The relationship between pump outlet pressure and control input current (for a 24V coil) is shown for various PC settings below. The hydraulic schematic for the Normally Closed Fan Drive Control is shown below as well. Pump Outlet Pressure vs. control input current 24V Normally closed FDC (at 100Hz PWM) Attaining remarkably low system pressures is possible with the Fan Drive Control. The minimum system pressure is greatly dependent on individual system parameters such as fan motor type and fan size. This feature is highly desirable in low cooling demand conditions to keep fan speed as slow as possible. Virtually eliminated control deadband increases controllability and reduces power loss. Control current resolution is greatly improved. ### S45 pump with integrated FDC control Schematic # Solenoid data - Normally closed # Solenoid Data - Normally Closed | | 12V | 24V | |---------------------------------|-----------------|-----| | Connector on solenoid | Deutsch DT04-2P | | | Mating Connector (not included) | Deutsch DT06-2S | | # Solenoid Data – Normally Closed (continued) | | 12V | 24V | | | |------------------------------------|------------|--|--|--| | Identification by color of nut | Black | Blue | | | | Nominal current | 1650 mA | 840 mA | | | | Maximum Control Current | 1800 mA | 920 mA | | | | Environmental rating | | IP67 without mating connector, IP69K with mating connector | | | | Maximum output driver current | | 2.0 Amps | | | | PLUS+1 dither frequency | Not recomm | Not recommended | | | | Useable PWM Frequency Range | | 50-200 Hz | | | | Recommended PWM Frequency | | 200 Hz | | | | Nominal Resistance at 20°C | 3.66 Ω | 14.2 Ω | | | | Inductivity (pin at stroke end) | 33 mH | 140 mH | | | | Minimum voltage | 9.5 Vdc | 19.0 Vdc | | | | Maximum power 17.9 Watts 18.1 Watt | | 18.1 Watts | | | The Fan Drive Control is designed as a current driven control. It requires a PWM- input signal. # Fan Drive Control configuration The available Normally Closed Fan Drive Controls for Series 45 are shown below. The allowable Pressure Compensator (PC) pressure settings are provided for each frame. #### C module—Control | Fan Drive | Fan Drive Control Options | | Frame | | | | | | |---|---|------------|-------|---|---|---|--|--| | Code | Description | L K K2 J F | | F | Е | | | | | SA | Fan Drive Control (12Vdc), 100-210 Bar, Left | | | | | | | | | SB | SB Fan Drive Control (24Vdc), 100-210 Bar, Left • • • | | | | | | | | | SC Fan Drive Control (12Vdc), 220-310 Bar, Left • • • | | • | | | | | | | | SD | Fan Drive Control (24Vdc), 220-310 Bar, Left | | | • | • | • | | | | SE | SE Fan Drive Control (12Vdc), 100-210 Bar, Right • • | | | | | | | | | SF Fan Drive Control (24Vdc), 100-210 Bar, Right • • | | | | | | | | | | SG | Fan Drive Control (12Vdc), 220-310 Bar, Right | | | | • | • | | | | SH | Fan Drive Control (24Vdc), 220-310 Bar, Right | | | | • | • | | | # G module options—Choke Orifice | Fan Drive Control options | Choke Orifice size | |---------------------------|--------------------| | G | 0.8 mm (0.031 in) | | F | 1.0 mm (0.039 in | # H module options—Gain Orifice | Fan Drive Control options | Gain Orifice Size | |---------------------------|-------------------| | E | 1.2 mm (0.047 in) | ### NC Fan Drive Control 3D Views # **Angle Sensor** ### PLUS+1 Compliance The Electric Angle
Sensor has met and passed the Danfoss PLUS+1 compliance standard testing, and as such, this Angle Sensor is PLUS+1 compliant. PLUS+1 compliance blocks are available on the Danfoss website, within the PLUS+1 Guide section. # **Angle Sensor Principle** The Series 45 Angle Sensor option allows users to measure the angle of pump displacement. The angle sensor is an electronic sensor mounted to the housing of the pump, which reads the pump stroke angle based on the swashplate position. Interfacing with the angle sensor is achieved through a 4-pin Deutsch DTM04-4P receptacle attached to a flexible connection cable (for a mating connector, use Deutsch® plug DTM06-4S). The sensor is mounted to the pump within an aluminum housing to prevent magnetic interference. P108788 # **Angle Sensor Characteristics** The angle sensor package incorporates two sensor signals (primary & secondary), within a single sensor housing. This allows for improved accuracy and troubleshooting. For the 'Angle Sensor – Right' order code in the K module, the sensor is positioned according to the following conventions: | Code | Description | Frame | | | | | |---|--|-------|---|---|---|---| | K Module - I | K Module - Housing | | К | J | F | Е | | A1R SAE-C Flange 4-bolt, SAE O-ring boss ports, Single seal, Angle Sensor • | | | | | | | | A2R | SAE-C Flange 4-bolt, SAE O-ring boss ports, Single seal, Angle Sensor | | • | | | | | AFR | AFR SAE-C Flange 2-bolt @45°, SAE O-ring boss ports, Single Seal, Angle Sensor • | | | | | | | M Module – Special Hardware | | | | | | | | ANS | ANS Angle Sensor Hardware • • • | | • | | | | ### J & F-Frame (45-90cc) Angle Sensor Identification Convention: When looking at the input shaft with the control on the 'top' side, the angle sensor will be viewed on the right hand side. This convention is true for both Clockwise and Counter-clockwise rotation J & F-Frames. J Frame Angle Sensor Position **F Frame Angle Sensor Position** P108816 This sensor location yields a unique voltage versus swashplate angle characteristic curve which is the same for both Clockwise and Counter-clockwise rotation J & F-frames. Although each pair of curves will be unique for individual pumps, a general example of what to expect is provided below for J & F units with the 'Right' angle sensor position. ### E-Frame (100-147cc) Angle Sensor Identification Convention: The location convention for the E-Frame angle sensor is different from that of the J & F-Frame due to a difference in design of the endcap and servo systems. When looking at the input shaft, the angle sensor will be positioned on the same side as the outlet port of the endcap. The outlet port of the endcap is always the smaller of the inlet and outlet ports, indicated below. This is the 'right side' order code location, even though it appears on the left hand side from a frontal view. **E Frame Angle Sensor Position** P108821 Clockwise rotation E-frames appear with the control on the top side in this view. Counter-clockwise rotation E-Frames appear with the control on the bottom side in this view. This sensor location yields a unique voltage versus swashplate angle characteristic curve which is different for Clockwise and Counter-clockwise rotation E-frames. Although each pair of curves will be unique for individual pumps, a general example of what to expect is provided below for both Clockwise and Counter-clockwise rotation units with the **Right** angle sensor position. 1 0.5 0 3 4 1 2 5 7 9 **Swashplate Angle (Degrees)** © Danfoss | January 2022 BC152886483703en-001201 | 39 10 11 12 13 14 15 16 17 18 ### **Angle sensor electrical specifications** #### Electrical specifications | Description | Minimum | Typical | Maximum | Unit | Note | |--|-----------|----------|-----------|---------|--| | Supply (V+) | 4.75 | 5 | 5.25 | Vdc | Sensor is ratiometric in the voltage range | | Supply protection | _ | _ | 28 | Vdc | Sensor will switch off above 5.5 V | | Supply current drawn | _ | 22 | 25 | mA | Sensor supply at 5 V | | Output short circuit current (VDD to SIG 1/2 and GND to SIG 1/2) | _ | _ | 7.5 | mA | Additional 7.5 mA for each sensor signal, total sensor 7.5x2+22=37 mA typical for FSO | | Resolution | _ | 0.03 | _ | degree | 11 bit output channel | | Hysteresis | _ | _ | _ | _ | Design of sensor eliminates any mechanical hysteresis | | Environment temperature range | -40 (-40) | 80 (176) | 104 (220) | °C (°F) | If temperature limits are exceeded, the sensor will function at a reduced level of performance | | Operating temperature range | 20 (68) | 50 (122) | 95 (203) | °C (°F) | Temperature of oil | | Storage temperature | -40 (-40) | _ | 125 (257) | °C (°F) | _ | | Refresh rate of the sensor | _ | _ | 100 | μs | Internal ADC refresh rate | #### **Angle Sensor Calibration** A 2-point calibration of the sensor is recommended, with points measured at pump standby, and maximum pump stroke. Maximum pump stroke can be achieved when the pump input shaft is not being turned, as Series 45 pumps are biased to maximum displacement. In some cases the pump may need to be turned momentarily to ensure the pump is in the maximum displacement position; this can be achieved through a momentary switching of the engine starter on/off. ### **Angle Sensor Functionality** The Series 45 angle sensor option is intended for functionality such as electronic torque limiting, duty cycle measurement, troubleshooting, etc. The angle sensor is PLUS+1 compliant with an available hardware compliance block. Angle Sensor Intended Functionality: - Electronic Torque Limiting - Duty Cycle Recording - Troubleshooting Angle Sensor Unsupported Functionality: • Displacement/Flow Control # **Charge Pump Circuits** This section includes two general circuits for providing charge pressure to Series 45 pumps. ### **Example Circuit #1** Example Circuit #1 shows a generic open circuit charging layout. In applications where the Series 45 pump does not have the required inlet pressure available, an external charge pump may be used to increase the inlet pressure to an acceptable level. Scenarios in which this may occur include a layout with the pump above the reservoir, high altitude conditions, etc. For circuit type #1, follow these recommendations: - Size the charge pump so that its flow is 10 to 20% greater than the Series 45 flow rate at worst case conditions - Include a relief valve or check valve, as shown, between the charge pump and S45 pump with an initial pressure setting of up to 10 bar; if aeration at the inlet of the S45 pump is still present, increase the relief/cracking pressure up to 20 bar (maximum). #### Generic open circuit # **Example Circuit #2** Example Circuit #2 shows a semi-closed circuit charging layout. In applications where the Series 45 pump does not have the required inlet pressure available, an external charge pump may be used to increase the inlet pressure to an acceptable level. Scenarios in which this may occur include a layout with the pump above the reservoir, high altitude conditions, etc. For circuit type #2, follow these recommendations: - Determine if the work function ever consumes more flow than it expels (for example: double acting or single acting cylinders). If so, determine the maximum flow differential in/out of the work function. - Size the charge pump so that its flow is 10-20% of the Series 45 pump flow at worst case conditions, and increase this size by any work function flow differential which may occur. - An inline oil cooler may be required for this type of circuit. - Include an oil filter after the oil cooler; this ensures that any sediment in the oil cooler that may be dislodged due to vibration or any other reason is caught in the filter. - Include a relief valve or check valve between the charge pump and S45 pump with an initial pressure setting of up to 10 bar; if aeration at the inlet of the S45 pump is still present, increase the relief/ cracking pressure up to 20 bar (maximum). © Danfoss | January 2022 BC152886483703en-001201 | 41 #### Semi-closed circuit ### **Operating parameters** #### **Fluids** Ratings and performance data for Series 45 products are based on operating with premium hydraulic fluids containing oxidation, rust, and foam inhibitors. These include premium turbine oils, API CD engine oils per SAE J183, M2C33F or G automatic transmission fluids (ATF), Dexron II (ATF) meeting Allison C-3 or Caterpillar T0-2 requirements, and certain specialty agricultural tractor fluids. For more information on hydraulic fluid selection, see Danfoss publication **BC152886484524** Hydraulic Fluids and Lubricants, Technical Information, and **520L0465** Experience with Biodegradable Hydraulic Fluids, Technical Information. #### Viscosity #### Fluid viscosity limits | Condition | | mm ² /s (cSt) | sus | |-----------|---------------------------|--------------------------|------| | ν min. | continuous | 9 | 58 | | | intermittent | 6.4 | 47 | | v max. | continuous | 110 | 500 | | | intermittent (cold start) | 1000 | 4700 | Maintain fluid viscosity within the recommended range for maximum efficiency and pump life. *Minimum Viscosity* – This should only occur during brief occasions of maximum ambient temperature and severe duty cycle operation. *Maximum Viscosity* – This should only occur at cold start. Pump performance will be reduced. Limit speeds until the system warms up. # **Temperature** Oil temperature limits are defined at the pump's case drain. As a rule of thumb, under steady state conditions the case drain temperature is approximately 20 - 25 degrees Centegrade higher than the pump's inlet oil temperature. ### Frame L, K, J, F, & E Temperature Limits | Minimum
(intermittent, cold start) | - 40° C [- 40° F] | |------------------------------------|-------------------| | Continuous | 82° C [180° F] | | Maximum Intermittent | 104° C [220° F] | Frame L, K, J, F, & E Maximum Temperature limits are based on material properties. Don't exceed it. Measure temperature at the case drain of the pump. #### K2 Frame Temperature Limits | Minimum
(intermittent, cold start) | - 40° C [- 40° F] | |---------------------------------------|-------------------| | Continuous | 104° C [219° F] | | Maximum Intermittent | 115° C [239° F] | Frame K2 Maximum temperature limits are higher than other frame sizes & based on improved swashplate bearing material capabilities. Continuous operation at the Maximum Intermittent Temperature is possible with K2 if fluid viscosity requirements are maintained. Minimum temperature for all frame sizes relates to the physical properties of the component materials. Cold oil will not affect the durability of the pump components. However, it may affect the ability of the pump to provide flow and transmit power. Ensure fluid temperature and viscosity limits are concurrently satisfied. # **Inlet pressure** #### Inlet pressure limits | Minimum
(continuous) | 0.8 bar absolute [6.7 in. Hg vac.] (at reduced maximum speed) | |-------------------------|---| | Minimum
(cold start) | 0.5 bar absolute [15.1 in. Hg vac.] | Maintain inlet pressure within the limits shown in the table. Refer to Inlet pressure vs. speed charts for each displacement. #### Case pressure #### Case pressure limits | Maximum
(continuous) | 0.5 bar [7 psi] above inlet | |---------------------------|-----------------------------| | Intermittent (cold start) | 2 bar [29 psi] above inlet | Maintain case pressure within the limits shown in the table. The housing must always be filled with hydraulic fluid. # Caution Operating outside of inlet and case pressure limits will damage the pump. To minimize this risk, use full size inlet and case drain plumbing, and limit line lengths. ### **Pressure ratings** The specification tables in each section give maximum pressure ratings for each displacement. Not all displacements within a given frame operate under the same pressure limits. Definitions of the operating pressure limits appear below. Continuous working pressure is the average, regularly occurring operating pressure. Operating at or below this pressure should yield satisfactory product life. For all applications, the load should move below this pressure. This corresponds to the maximum allowable PC setting. Maximum (peak) working pressure is the highest intermittent pressure allowed. Maximum machine load should never exceed this pressure, and pressure overshoots should not exceed this pressure. *See Duty cycle and pump life. # **Speed ratings** The specification tables in each section give minimum, maximum, and rated speeds for each displacement. Not all displacements within a given frame operate under the same speed limits. Definitions of these speed limits appear below. *Rated speed* is the fastest recommended operating speed at full displacement and 1 bar abs. [0 in Hg vac] inlet pressure. Operating at or below this speed should yield satisfactory product life. Maximum speed is the highest recommended operating speed at full power conditions. Operating at or beyond maximum speed requires positive inlet pressure and/or a reduction of pump outlet flow. Refer to Inlet pressure vs. speed charts for each displacement. *Minimum speed* is the lowest operating speed allowed. Operating below this speed will not yield satisfactory performance. ### **Duty cycle and pump life** Knowing the operating conditions of your application is the best way to ensure proper pump selection. With accurate duty cycle information, your Danfoss representative can assist in calculating expected pump life. 44 | © Danfoss | January 2022 # Speed, flow, and inlet pressure Inlet pressure vs. speed charts in each section show the relationship between speed, flow, and inlet pressure for each displacement. Use these charts to ensure your application operates within the prescribed range. The charts define the area of inlet pressures and speeds allowed for a given displacement. Operating at lower displacements allows greater speed or lower inlet pressure. Sample inlet pressure vs. speed chart Operating limit at 80% displacement Operating limit at 90% displacement Operating limit at 100% displacement © Danfoss | January 2022 BC152886483703en-001201 | 45 #### **Design parameters** #### Installation Series 45 pumps may be installed in any position. To optimize inlet conditions, install the pump at an elevation below the minimum reservoir fluid level. Design inlet plumbing to maintain inlet pressure within prescribed limits (see *Inlet pressure* limits) Fill the pump housing and inlet line with clean fluid during installation. Connect the case drain line to the uppermost drain port (L1 or L2) to keep the housing full during operation. To allow unrestricted flow to the reservoir, use a dedicated drain line. Connect it below the minimum reservoir fluid level and as far away from the reservoir outlet as possible. Use plumbing adequate to maintain case pressure within prescribed limits (see *Case pressure* limits,). # **Filtration** To prevent damage to the pump, including premature wear, fluid entering the pump inlet must be free of contaminants. Series 45 pumps require system filtration capable of maintaining fluid cleanliness at ISO 4406-1999 class 22/18/13 or better. Danfoss does not recommend suction line filtration. Suction line filtration can cause high inlet vacuum, which limits pump operating speed. Instead we recommend a 125 μ m (150 mesh) screen in the reservoir covering the pump inlet. This protects the pump from coarse particle ingestion. Return line filtration is the preferred method for open circuit systems. Consider these factors when selecting a system filter: - Cleanliness specifications - · Contaminant ingression rates - Flow capacity - Desired maintenance interval Typically, a filter with a beta ratio of $\beta10=10$ is adequate. However, because each system is unique, only a thorough testing and evaluation program can fully validate the filtration system. For more information, see Danfoss publication **BC152886482150** Design Guidelines for Hydraulic Fluid Cleanliness. #### Reservoir The reservoir provides clean fluid, dissipates heat, and removes entrained air from the hydraulic fluid. It allows for fluid volume changes associated with fluid expansion and cylinder differential volumes. Minimum reservoir capacity depends on the volume needed to perform these functions. Typically, a capacity of one to three times the pump flow (per minute) is satisfactory. Locate the reservoir outlet (suction line) near the bottom, allowing clearance for settling foreign particles. Place the reservoir inlet (return lines) below the lowest expected fluid level, as far away from the outlet as possible. #### Fluid velocity Choose piping sizes and configurations sufficient to maintain optimum fluid velocity, and minimize pressure drops. This reduces noise, pressure drops, and overheating. It maximizes system life and performance. #### Recommended fluid velocities | System lines | 6 to 9 m/sec [20 to 30 ft/sec] | |--------------|--------------------------------| | Suction line | 1 to 2 m/sec [4 to 6 ft/sec] | | Case drain | 3 to 5 m/sec [10 to 15 ft/sec] | Typical guidelines; obey all pressure ratings. ### **Velocity equations** SI units Q = flow (I/min) A = area (mm²) $Velocity = (16.67 \cdot Q)/A (m/sec)$ **US** units Q = flow (US gal/min) A = area (in²) $Velocity = (0.321 \cdot Q)/A (ft/sec)$ #### **Shaft loads** Series 45 pumps have tapered roller bearings capable of accepting external radial and thrust (axial) loads. The external radial shaft load limits are a function of the load position, orientation, and the operating conditions of the pump. The maximum allowable radial load (R_e) is based on the maximum external moment (M_e) and the distance (L) from the mounting flange to the load. Compute radial loads using the formula below. Tables in each section give maximum external moment (M_e) and thrust (axial) load (T_{in} , T_{out}) limits for each pump frame size and displacement. Radial load formula $M_e = R_e \cdot L$ L = Distance from mounting flange to point of load Me = Maximum external moment R_e = Maximum radial side load Shaft load orientation #### **Bearing life** All shaft loads affect bearing life. In applications where external shaft loads can not be avoided, maximize bearing life by orientating the load between the 30° and 330° positions, as shown. Tapered input shafts or clamp-type couplings are recommended for applications with radial shaft loads. ### **Mounting flange loads** Adding auxiliary pumps and/or subjecting pumps to high shock loads may overload the pump mounting flange. Tables in each section give allowable continuous and shock load moments for each frame size. Applications with loads outside allowable limits require additional pump support. - Shock load moment (M_S) is the result of an instantaneous jolt to the system. - Continuous load moments (M_c) are generated by the typical vibratory movement of the application. ### **Estimating overhung load moments** Use the equations below to estimate the overhung load moments for multiple pump mounting. See installation drawings in each section to find the distance from the mounting flange to the center of gravity for each frame size. Refer to the technical specifications in each section to find pump weight. ### Overhung load example Shock load formula $$M_s = G_s \cdot K \cdot (W_1 \cdot L_1 + W_2 \cdot L_2 + ... W_n \cdot L_n)$$ Continuous load formula $$M_c = G_c \cdot K \cdot (W_1 \cdot L_1 + W_2 \cdot L_2 + ... W_n \cdot L_n)$$ SI units M_s = Shock load moment (N•m) M_c =
Continuous (vibratory) load moment (N•m) G_s = Acceleration due to external shock (G's) G_c = Acceleration due to continuous vibration (G's) K = Conversion factor = 0.00981 $W_n = Mass of nth pump (kg)$ L_n = Distance from mounting flange to nth pump CG (mm) **US** units M_s = Shock load moment (lbf•in) M_c = Continuous (vibratory) load moment (lbf•in) G_s = Acceleration due to external shock (G's) G_c = Acceleration due to continuous vibration (G's) K = Conversion factor = 1 $W_n = Weight of nth pump (lb)$ L_n = Distance from mounting flange to nth pump CG (in) #### **Auxiliary mounting pads** Auxiliary mounting pads are available for all radial ported Series 45 pumps. Since the auxiliary pad operates under case pressure, use an O-ring to seal the auxiliary pump mounting flange to the pad. Oil from the main pump case lubricates the drive coupling. - All mounting pads meet SAE J744 Specifications. - The combination of auxiliary shaft torque and main pump torque must not exceed the maximum pump input shaft rating. Tables in each section give input shaft torque ratings for each frame size. - Applications subject to severe vibratory or shock loading may require additional support to prevent mounting flange damage. Tables in each section give allowable continuous and shock load moments for each frame size. - The drawing and table below give mating pump dimensions for each size mount. Refer to installation drawings in each section for auxiliary mounting pad dimensions. ### Mating pump specifications ### Dimensions | | SAE A | SAE B | SAE C | |---|---------|---------|---------| | Р | 82.55 | 101.60 | 127.00 | | | [3.250] | [4.000] | [5.000] | | В | 6.35 | 9.65 | 12.70 | | | [0.250] | [0.380] | [0.500] | | С | 12.70 | 15.20 | 23.37 | | | [0.500] | [0.600] | [0.920] | | D | 58.20 | 53.10 | 55.60 | | | [2.290] | [2.090] | [2.190] | | E | 15.00 | 17.50 | 30.50 | | | [0.590] | [0.690] | [1.200] | | F | 13.50 | 14.20 | 18.30 | | | [0.530] | [0.560] | [0.720] | #### Input shaft torque ratings Input shaft tables in each section give maximum torque ratings for available input shafts. Ensure that your application respects these limits. Maximum torque ratings are based on shaft strength. Do not exceed them. Coupling arrangements that are not oil-flooded provide a reduced torque rating. Contact your Danfoss representative for proper torque ratings if your application involves non oil-flooded couplings. Danfoss recommends mating splines adhere to ANSI B92.1-Class 6e. Danfoss external splines are class 5 fillet root side fit. Tolerance classes 5 and 6e have the same minimum effective space width and maximum effective tooth thickness limits to ensure interchangeability between mating parts. Tables in each section give full spline dimensions and data. ### Understanding and minimizing system noise Charts in each section give sound levels for each frame size and displacement. Sound level data are collected at various operating speeds and pressures in a semi-anechoic chamber. Many factors contribute to the overall noise level of any application. Below is some information to help understand the nature of noise in fluid power systems, and some suggestions to help minimize it. Noise is transmitted in fluid power systems in two ways: as fluid borne noise, and structure borne noise. Fluid-borne noise (pressure ripple or pulsation) is created as pumping elements discharge oil into the pump outlet. It is affected by the compressibility of the oil, and the pump's ability to transition pumping elements from high to low pressure. Pulsations travel through the hydraulic lines at the speed of sound (about 1400 m/s [4600 ft/sec] in oil) until there is a change (such as an elbow) in the line. Thus, amplitude varies with overall line length and position. Structure-borne noise is transmitted wherever the pump casing connects to the rest of the system. The way system components respond to excitation depends on their size, form, material, and mounting. System lines and pump mounting can amplify pump noise. Follow these suggestions to help minimize noise in your application: - Use flexible hoses. - · Limit system line length. - If possible, optimize system line position to minimize noise. - If you must use steel plumbing, clamp the lines. - If you add additional support, use rubber mounts. - Test for resonants in the operating range, if possible avoid them. ### Understanding and minimizing system instability Knowing the operating conditions and system setup of your application is the best way to ensure a stable system. All fan-drive circuits should use a choke orifice to ensure system stability. With accurate system information, your Danfoss representative can assist you in the selection of a servo control orifice. #### LS System Over-Signaling To optimize the life and performance of Series 45 products using Load Sensing controls, it is important to ensure the margin pressure signal at the pump's control is conditioned in a way which does not damage the control's internal components. #### Caution Excessive component wear may occur when margin pressures > 60 bar are imposed on the LS spool. Reduce margin pressures to 60 bar or less. Margin pressure defines the physical movement of the LS spool and subsequent modulation of pump flow to the system and is defined by: **Margin Pressure** 50 | © Danfoss | January 2022 LS System Over-Signaling results when the actual margin pressure magnitude exceeds the minimum pressure required to shift the LS spool. It is important to limit excessive margin pressures in transient system conditions to ensure satisfactory control component life. For more information on LS System Over-signaling please contact your Danfoss Representative. # **Sizing equations** Use these equations to help select the right pump size, displacement and power requirements for your application | | Based on SI units | | | Based on US units | | |--------|--------------------------------|---|---------|---------------------------------|---| | Flow | Output flow Q = | $\frac{V_g \cdot n \cdot \eta_v}{1000}$ | (I/min) | Output flow Q = | $\frac{V_g \cdot n \cdot \eta_v}{231}$ (US gal/min) | | Torque | Input torque M= | $\frac{V_g \star \Delta p}{20 \star \pi \star \eta_m}$ | (N•m) | Input torque M= | $\frac{V_g \cdot \Delta p}{2 \cdot \pi \cdot \eta_m} \qquad \qquad \text{(Ibf-in)}$ | | Power | Input power P = $\frac{M}{30}$ | $\frac{\mathbf{n} \cdot \mathbf{n}}{000} = \frac{\mathbf{Q} \cdot \Delta \mathbf{p}}{600 \cdot \mathbf{r}}$ | (kW) | Input power P = $\frac{M}{198}$ | $\frac{n \cdot \pi}{3000} = \frac{Q \cdot \Delta p}{1714 \cdot \eta_t} (hp)$ | ### **Variables** SI units [US units] **V**_g Displacement per revolution cm³/rev [in³/rev] **p**₀ Outlet pressure bar [psi] **p**_i Inlet pressure bar [psi] Δp p_O - p_i (system pressure) bar [psi] **n** Speed min⁻¹ (rpm) **η**_v Volumetric efficiency η_m Mechanical efficiency η_t Overall efficiency $(\eta_v \cdot \eta_m)$ #### Design Series 45 Frame K2 pumps have a single servo piston design with a cradle-type swashplate set in polymer-coated journal bearings. A bias spring and internal forces increase swashplate angle. The servo piston decreases swashplate angle. Nine reciprocating pistons displace fluid from the pump inlet to the pump outlet as the cylinder block rotates on the pump input shaft. The block spring holds the piston slippers to the swashplate via the slipper retainer. The cylinder block rides on a bi-metal valve plate optimized for high volumetric efficiency and low noise. Tapered roller bearings support the input shaft and a viton lip-seal protects against shaft leaks. An adjustable one spool (PC only, not shown) or two spool (LS and remote PC) control senses system pressure and load pressure (LS controls). The control ports system pressure to the servo piston, adjusting swashplate angle to control pump output flow. Frame K2 cross section F 109073 # **Technical Specifications** | Description | | Unit | K2 Frame | | | | | | |--|------------------------------|---------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--| | | | | 25C | 30C | 38C | 40C | 45C | | | Maximum Displacement | | cm³ [in³] | 25 [1.53] | 30 [1.83] | 38 [2.32] | 40 [2.44] | 45 [2.75] | | | Working Input Speed | Minimum | min -1 (rpm) | 500 | 500 | 500 | 500 | 500 | | | | Continuous | | 3450 | 3200 | 2900 | 3100 | 2900 | | | | Maximum | | 3750 | 3450 | 3050 | 3200 | 3050 | | | Working Pressure | Continuous | bar [psi] | 260 [3771] | • | • | | | | | | Maximum | | 350 [5075] | | | | | | | Flow at rated speed (theore | etical) | l/min [US gal/
min] | 86.3 [22.8] | 96.0 [25.4] | 110.2 [29.1] | 124 [32.8] | 130.5 [34.5] | | | Input torque at maximum at 49° C [120°F] | displacement (theoretical) | N•m/bar
[lbf•in/1000
psi] | 0.398 [243] | 0.477 [291] | 0.605 [369] | 0.636 [389] | 0.716 [438] | | | Mass moment of inertia of | internal rotating components | kg•m²
[slug•ft²] | 0.00184
[0.00135] | 0.00184
[0.00135] | 0.00184
[0.00135] | 0.00203
[0.00150] | 0.00203
[0.00150] | | | Weight - Axial ports | | kg [lb] | 16 [35] | • | • | • | • | | | Weight - Radial ports (no th | nrough drive) | | 17 [37] | | | | | | | External Shaft Loads | External moment (Me) | N•m [lbf•in] | 61 [540] | 61 [540] | 76 [673] | 76 [673] | 76 [673] | | | | Thrust in (Tin), out (Tout) | N [lbf] | 1000 [225] | 1000 [225] | 1200 [270] | 1200 [270] | 1200 [270 | | | Mounting flange load | Vibratory (continuous) | N•m [lbf•in] | 1005 [8895] | • | • | • | • | | | moments | Shock (maximum) | | 3550 [31420] | | | | | | # **Order Code** # Code description | Code | Description | |------
--| | R | Product Frame, Variable Open Circuit Pump | | S | Rotation | | Р | Displacement | | С | Control Type | | D | Pressure Compensator Setting | | Е | Load Sense Setting | | F | Not Used | | G | Choke Orifice | | Н | Gain Orifice | | J | Input Shaft/Auxiliary Mount/Endcap | | K | Shaft Seal/Front Mounting Flange/Housing Ports | | L | Displacement Limiter | | М | Special Hardware | | N | Special Features | # R Frame | | | K2 Frame | | | | | |----|---|----------|------|------|------|------| | | | 025C | 030C | 038C | 040C | 045C | | K2 | K2 Frame, variable displacement open circuit pump | • | • | • | • | • | # S Rotation | | | K2 Frame | | | | | |---|------------------------------|----------|------|------|------|------| | | | 025C | 030C | 038C | 040C | 045C | | L | Left Hand (counterclockwise) | • | • | • | • | • | | R | Right Hand (clockwise) | • | • | • | • | • | # P Displacement | 025C | 25 cm³/rev [1.53 in³/rev] | • | | | | | |------|---|---|---|---|---|---| | 030C | 30 cm ³ /rev [1.83 in ³ /rev] | | • | | | | | 038C | 38 cm³/rev [2.32 in³/rev] | | | • | | | | 040C | 40 cm ³ /rev [2.44 in ³ /rev] | | | | • | | | 045C | 45 cm ³ /rev [2.75 in ³ /rev] | | | | | • | # C Control type | | K2 Frame | | | | | |--|---|---|--|---
--| | | 025C | 030C | 038C | 040C | 045C | | Pressure Compensator | • | • | • | • | • | | Remote Pressure Compensator | • | • | • | • | • | | Load Sensing/Pressure Comp. w/Bleed Orifice | • | • | • | • | • | | Load Sensing/Pressure Comp. | • | • | • | • | • | | Electric Dump valve (On/Off) w/Load sensing / Pressure comp. (NC,12VDC), Left | • | • | • | • | • | | Electric Proportional Pressure Control w/
Pressure comp. (NC,12VDC), Left | • | • | • | • | • | | Electric Proportional Pressure Control w/
Pressure comp. (NC,24VDC), Left | • | • | • | • | • | | Electric Proportional Pressure Control w/
Pressure comp. (NO,12VDC), Left | • | • | • | • | • | | Electric Proportional Pressure Control w/
Pressure comp. (NO,24VDC), Left | • | • | • | • | • | | Electric On/Off Pressure Control w/Pressure comp. (NC,12VDC), Left | • | • | • | • | • | | Electric On/Off Pressure Control w/Pressure comp. (NC,24VDC), Left | • | • | • | • | • | | Electric On/Off Pressure Control w/Pressure comp. (NO,12VDC), Left | • | • | • | • | • | | Electric On/Off Pressure Control w/Pressure comp. (NO,24VDC), Left | • | • | • | • | • | | Fan drive control (12Vdc),100-210 Bar, Left | | • | | • | • | | Fan drive control (24Vdc),100-210 Bar, Left | | | • | • | • | | Fan drive control (12Vdc),220-260 Bar, Left | | • | • | • | • | | Fan drive control (24Vdc),220-260 Bar, Left | | • | • | • | • | | | Remote Pressure Compensator Load Sensing/Pressure Comp. w/Bleed Orifice Load Sensing/Pressure Comp. Electric Dump valve (On/Off) w/Load sensing / Pressure comp. (NC,12VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NC,12VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NC,24VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NO,12VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NO,12VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NC,12VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NC,24VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,12VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,12VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,12VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,24VDC), | Pressure Compensator Remote Pressure Compensator Load Sensing/Pressure Comp. w/Bleed Orifice Load Sensing/Pressure Comp. Electric Dump valve (On/Off) w/Load sensing / Pressure comp. (NC,12VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NC,12VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NC,24VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NO,12VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NO,12VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,24VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NC,12VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NC,24VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,12VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,12VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,12VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,24VDC), (NO,224VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,224VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,224VDC), Left | Pressure Compensator Remote Pressure Compensator Load Sensing/Pressure Comp. w/Bleed Orifice Load Sensing/Pressure Comp. Electric Dump valve (On/Off) w/Load sensing / Pressure comp. (NC,12VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NC,12VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NC,24VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NO,12VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NO,12VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NO,24VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NO,24VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NC,12VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NC,24VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,12VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,24VDC), (NO,224VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,224VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,224VDC), Left | Pressure Compensator Remote Pressure Compensator Load Sensing/Pressure Comp. w/Bleed Orifice Load Sensing/Pressure Comp. Electric Dump valve (On/Off) w/Load sensing / Pressure comp. (NC,12VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NC,12VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NC,24VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NO,12VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NO,12VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NO,24VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NC,24VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NC,12VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NC,24VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,24VDC), | Pressure Compensator Remote Pressure Compensator Load Sensing/Pressure Comp. w/Bleed Orifice Load Sensing/Pressure Comp. Electric Dump valve (On/Off) w/Load sensing / Pressure comp. (NC,12VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NC,12VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NC,24VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NO,12VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NO,12VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NO,12VDC), Left Electric Proportional Pressure Control w/ Pressure comp. (NO,24VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,12VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NC,24VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,12VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,12VDC), Left Electric On/Off Pressure Control w/Pressure comp. (NO,24VDC), | # DPC setting (2 digit code, 10 bar increments) | Example | 25 = 250 bar (3625 psi) | | | | | | |---------|-----------------------------------|---|---|---|---|---| | 10-26 | 100 to 260 bar [1450 to 3771 psi] | • | • | • | • | • | # E Load sensing setting (2 digit code, 1 bar increments) | | | | K2 Frame | | | | | |---------|---|------|----------|------|------|------|--| | | | 025C | 030C | 038C | 040C | 045C | | | Example | 20 = 20 bar (290 psi) | | | • | • | | | | 10-40 | 10 to 40 bar [145 to 580 psi] | • | • | • | • | • | | | NN | Not applicable (pressure compensated only controls) | • | • | • | • | • | | # F Not used | NN | Not applicable | • | • | • | • | • | |----|----------------|---|---|---|---|---| # G Servo Control Orifice | N | None (standard) | • | • | • | • | • | |---|---|---|---|---|---|---| | Е | 0.8 mm diameter - Electrical proportional controls only | • | • | • | • | • | | F | 1.0 mm diameter - Electrical proportional controls only | • | • | • | • | • | | R | 0.8 mm diameter - FDC only | • | • | • | • | • | | S | 1.0 mm diameter - FDC only | • | • | • | • | • | # H Gain Orifice | 3 | 0.7 mm diameter | • | • | • | • | • | |---|---------------------------------------|---|---|---|---|---| | Е | Gain orifice FDC only, 1.2mm diameter | • | • | • | • | • | # J Input Shaft | C2 | 13 tooth, 16/32 pitch | |----|----------------------------------| | C3 | 15 tooth, 16/32 pitch | | K1 | 0.875 inch straight keyed | | K2 | 0.875 inch straight keyed (long) | | T1 | 1.0 inch tapered | # Auxiliary Mount/Endcap Style | Code | Auxiliary
Descriptio
n |
Endcap
Style | Inlet
Porting | Outlet
Porting | Endcap Description | |------|------------------------------|-----------------|------------------|-------------------|--| | MF | None | Axial | O-Ring
Boss | O-Ring
Boss | Inlet - SAE O-Ring boss port (1.875 inch threads) Outlet - SAE O-Ring boss port (1.3125 inch threads) | | MP | None | Axial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (1.25 inch
port M10 threads)
Outlet - Code 61 Split Flange Port 4 Bolt (1 inch
port M10 threads) | | NA | None | Axial | O-Ring
Boss | O-Ring
Boss | Inlet - ISO O-Ring boss port (M42 threads)
Outlet - ISO O-Ring boss port (M33 threads) | | MG | None | Radial | O-Ring
Boss | O-Ring
Boss | Inlet - SAE O-Ring boss port (1.875 inch threads)
Outlet - SAE O-Ring boss port (1.3125 inch threads) | | NS | None | Radial | O-Ring
Boss | O-Ring
Boss | Inlet - ISO O-Ring boss port (M48 threads)
Outlet - ISO O-Ring boss port (M33 threads) | © Danfoss | January 2022 BC152886483703en-001201 | 55 # Auxiliary Mount/Endcap Style (continued) | Code | Auxiliary
Descriptio
n | Endcap
Style | Inlet
Porting | Outlet
Porting | Endcap Description | |------|---|-----------------|------------------|-------------------|---| | MR | None | Radial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch
port 0.5 inch threads)
Outlet - Code 61 Split Flange Port 4 Bolt (1 inch
port 0.375 inch threads) | | RG | Running
Cover | Radial | O-Ring
Boss | O-Ring
Boss | Inlet - SAE O-Ring boss port (1.875 inch threads) Outlet - SAE O-Ring boss port (1.3125 inch threads) | | RR | Running
Cover | Radial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch
port M12 threads)
Outlet - Code 61 Split Flange Port 4 Bolt (1 inch
port M10 threads) | | AB | SAE-A 9
teeth, M10
threads | Radial | O-Ring
Boss | O-Ring
Boss | Inlet - ISO O-Ring boss port (M48 threads)
Outlet - ISO O-Ring boss port (M33 threads) | | AG | SAE-A, 9
teeth, M10
threads | Radial | O-Ring
Boss | O-Ring
Boss | Inlet - SAE O-Ring boss port (1.875 inch threads)
Outlet - SAE O-Ring boss port (1.3125 inch threads) | | AK | Integrated
SAE-A, 9
teeth, M10
threads | Radial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch
port M12 threads)
Outlet - Code 61 Split Flange Port 4 Bolt (1 inch
port M10 threads) | | FB | Integrated
SAE-A, 9
teeth, M10
threads | Radial | O-Ring
Boss | O-Ring
Boss | Inlet - ISO O-Ring boss port (M48 threads)
Outlet - ISO O-Ring boss port (M33 threads) | | FG | Integrated
SAE-A, 9
teeth, M10
threads | Radial | O-Ring
Boss | O-Ring
Boss | Inlet - SAE O-Ring boss port (1.875 inch threads)
Outlet - SAE O-Ring boss port (1.3125 inch threads) | | EK | SAE-A, 9
teeth, M10
threads | Radial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch
port 0.5 inch threads)
Outlet - Code 61 Split Flange Port 4 Bolt (1 inch
port 0.375 inch threads) | | TK | SAE-A, 11
teeth, M10
threads | Radial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch
port 0.5 inch threads)
Outlet - Code 61 Split Flange Port 4 Bolt (1 inch
port 0.375 inch threads) | | GG | SAE-A, 11
teeth, M10
threads | Radial | O-Ring
Boss | O-Ring
Boss | Inlet - SAE O-Ring boss port (1.875 inch threads)
Outlet - SAE O-Ring boss port (1.3125 inch threads) | | GT | SAE-A, 11
teeth, M10
threads | Radial | O-Ring
Boss | O-Ring
Boss | Inlet - ISO O-Ring boss port (M48 threads)
Outlet - ISO O-Ring boss port (M33 threads) | | BG | SAE-B, 13
teeth, M12
threads | Radial | O-Ring
Boss | O-Ring
Boss | Inlet - SAE O-Ring boss port (1.875 inch threads)
Outlet - SAE O-Ring boss port (1.3125 inch threads) | | BB | SAE-B, 13
teeth, M12
threads | Radial | O-Ring
Boss | O-Ring
Boss | Inlet - ISO O-Ring boss port (M48 threads)
Outlet - ISO O-Ring boss port (M33 threads) | | DR | SAE-B, 13
teeth, M12
threads | Radial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch
port M12 threads)
Outlet - Code 61 Split Flange Port 4 Bolt (1 inch
port M10 threads) | # Auxiliary Mount/Endcap Style (continued) | Code | Auxiliary
Descriptio
n | Endcap
Style | Inlet
Porting | Outlet
Porting | Endcap Description | |------|-------------------------------------|-----------------|------------------|-------------------|---| | VG | SAE-BB, 15
teeth, M12
threads | Radial | O-Ring
Boss | O-Ring
Boss | Inlet - SAE O-Ring boss port (1.875 inch threads)
Outlet - SAE O-Ring boss port (1.3125 inch threads) | | VK | SAE-BB, 15
teeth, M12
threads | Radial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch
port 0.5 inch threads)
Outlet - Code 61 Split Flange Port 4 Bolt (1 inch
port 0.375 inch threads) | # J Input Shaft/Auxiliary Mount/Endcap Available Combinations | | K2 Frame | | | | | | | |------|----------|------|------|------|------|--|--| | | 025C | 030C | 038C | 040C | 045C | | | | C2MF | • | • | • | • | • | | | | C2MG | • | • | • | • | • | | | | C2MP | • | • | • | • | • | | | | C2MR | • | • | • | • | • | | | | C2TK | • | • | • | • | • | | | | C3AB | • | • | • | • | • | | | | C3DR | • | • | • | • | • | | | | C3MF | • | • | • | • | • | | | | C3MG | • | • | • | • | • | | | | C3MP | • | • | • | • | • | | | | C3MR | • | • | • | • | • | | | | K1RG | • | • | • | • | • | | | | C2NA | • | • | • | • | • | | | | C3NA | • | • | • | • | • | | | | C2NS | • | • | • | • | • | | | | C3NS | • | • | • | • | • | | | | C2RR | • | • | • | • | • | | | | C3RR | • | • | • | • | • | | | | C2EK | • | • | • | • | • | | | | СЗЕК | • | • | • | • | • | | | | СЗТК | • | • | • | • | • | | | | C2DR | • | • | • | • | • | | | | C2VK | • | • | • | • | • | | | | C3VK | • | • | • | • | • | | | | C2AK | • | • | • | • | • | | | | СЗАК | • | • | • | • | • | | | | C3FG | • | • | • | • | • | | | | C2AB | • | • | • | • | • | | | | C2BB | • | • | • | • | • | | | | C3BB | • | • | • | • | • | | | | C2GT | • | • | • | • | • | | | © Danfoss | January 2022 BC152886483703en-001201 | 57 | | K2 Frame | | | | | | | | |------|----------|------|------|------|------|--|--|--| | | 025C | 030C | 038C | 040C | 045C | | | | | C3GT | • | • | • | • | • | | | | | C2RG | • | • | • | • | • | | | | | C3RG | • | • | • | • | • | | | | | C2AG | • | • | • | • | • | | | | | C3AG | • | • | • | • | • | | | | | C2GG | • | • | • | • | • | | | | | C3GG | • | • | • | • | • | | | | | C2BG | • | • | • | • | • | | | | | C3BG | • | • | • | • | • | | | | | C2VG | • | • | • | • | • | | | | | C3VG | • | • | • | • | • | | | | | C3FB | • | • | • | • | • | | | | | C2FB | • | • | • | • | • | | | | | C2FG | • | • | • | • | • | | | | | K1AG | • | • | • | • | • | | | | | K1MF | • | • | • | • | • | | | | | K2MF | • | • | • | • | • | | | | | K2MG | • | • | • | • | • | | | | | K2MR | • | • | • | • | • | | | | | K2RG | • | • | • | • | • | | | | # K Shaft seal | | | K2 Frame | | | | | |---|----------------------|----------|------|------|------|------| | | | 025C | 030C | 038C | 040C | 045C | | Α | Single (Viton [FKM]) | • | • | • | • | • | # K Mounting flange and housing port style | ſ | 6 | SAE-B Flange 2-bolt/SAE O-ring boss ports | | • | • | • | |---|---|---|--|---|---|---| | | | [7/8-14] | | | | | # K Not used | N Not applicable | • | • | • | • | • | |------------------|---|---|---|---|---| |------------------|---|---|---|---|---| # L Displacement limiter | PLB | None (plugged) | • | • | • | • | • | |-----|--------------------------------------|---|---|---|---|---| | AAA | Adjustable, factory set at max angle | • | • | • | • | • | # M Special hardware | NNN | None | • | • | • | • | • | |-----|------|---|---|---|---|---| # N Special features | NNN | None | • | • | • | • | • | |-----|------|---|---|---|---|---| # Performance K2-25C Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS]. P109103 Frame K2 ### Performance K2-30C # Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS]. 1 102104 # Performance K2-38C # Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS]. P109105 # Performance K2-40C ### Performance K2-45C ### Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS]. P109106 # **Hydraulic Controls** # **Pressure Compensated Controls** # Response/Recovery Times | (msec) | Response | Recovery | |--------|----------|----------| | 25C | 40 | 172 | | 30C | 44 | 152 | | 40C | 49 | 138 | | 38C | 49 | 138 | | 45C | 49 | 138 | ### PC Setting range | Model | Bar | Psi | |-------|---------|-----------| | 25C | 100-260 | 1450-3771 | | 30C | | | | 38C | | | | 40C | | | | 45C |] | | ### Schematic B Outlet S Inlet L1, L2 Case drain X Remote PC port # **Remote Pressure Compensated Controls** # Response/Recovery Times | (msec) | Response | Recovery | |--------|----------|----------| | 25C | 40 | 172 | | 35C | 44 | 152 | | 38C | 49 | 138 | | 40C | 49 | 138 | | 45C | 49 | 138 | # PC Setting Range | Model | RP | |-------|-----------------------------| | 25C | 100-260 bar [1450-3770 psi] | | 30C | 100-260 bar [1450-3770 psi] | | 38C | 100-260 bar
[1450-3770 psi] | | 40C | 100-260 bar [1450-3770 bar] | | 45C | 100-260 bar [1450-3770 bar] | ### LS Setting range | Model | bar | psi | |-------|-------|---------| | All | 10-40 | 145-580 | ### Schematic S **B** Outlet Inlet L1, L2 Case drain © Danfoss | January 2022 # **Load Sensing Pressure Compensated Controls** # Response/Recovery Times | (msec) | Response | Recovery | |--------|----------|----------| | 25C | 40 | 172 | | 30C | 44 | 152 | | 38C | 49 | 138 | | 40C | 49 | 138 | | 45C | 49 | 138 | # PC control setting range | Code | Bar | psi | |------|---------|-----------| | 25C | 100-260 | 1450-3771 | | 30C | | | | 38C | | | | 40C | | | | 45C | | | # LS setting range | Model | bar | psi | |-------|-------|---------| | All | 10-40 | 145–580 | ### Schematic B Outlet S Inlet L1, L2 Case drain X LS Signal port # Load Sensing Control with Bleed Orifice / Pressure Compensated # Response/Recovery Times | (msec) | Response | Recovery | |--------|----------|----------| | 25C | 40 | 172 | | 30C | 44 | 152 | | 38C | 49 | 138 | | 40C | 49 | 138 | | 45C | 49 | 138 | # PC control setting range | Code | Bar | psi | |------|---------|-----------| | 25C | 100-260 | 1450-3771 | | 30C | | | | 38C | | | | 40C | | | | 45C | | | ### LS setting range | Model | bar | psi | |-------|-------|---------| | All | 10-40 | 145–580 | ### Schematic **B** Outlet **S** Inlet **L1, L2** Case drain X LS signal port © Danfoss | January 2022 ### **Electric Controls** #### Connectors | Description | Quantity | Ordering Number | |--------------------------------|----------|-------------------------| | Mating Connector | 1 | Deutsch® DT06-2S | | Wedge Lock | 1 | Deutsch® W25 | | Socket Contact (16 and 18 AWG) | 2 | Deutsch® 0462-201-16141 | | Danfoss mating connector kit | 1 | K29657 | ### **Continuous Duty Operating Range** Continuous duty operating range ### **Solenoid Data - Normally Closed** | Voltage | 12V | 24V | |---|---------|---------| | Threshold Control [mA] (310/260 bar PC setting, oil temp X) | 200/400 | 100/200 | | End Current [mA] (20 bar LS setting, oil temp X) | 1200 | 600 | ### **Solenoid Data - Normally Open** | Voltage | 12V | 24V | |--|-----------|---------| | Threshold Control [mA] (20 bar LS setting, oil temp X) | 0 | 0 | | End Current [mA] (260/310 bar PC setting, oil temp X) | 1000/1100 | 500/550 | ### Normally Closed Electric On/Off with Pressure Compensation Controls | Voltage ¹ | 12V | 24V | |--|-----------|---------| | Threshold Control [mA] (20 bar LS setting, oil temp X) | 0 | 0 | | End Current [mA] (260/310 bar PC setting, oil temp X) | 1000/1100 | 500/550 | ¹ Without servo control orifice For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. #### Schematic B Outlet S Inlet L1, L2 Case drain X Load sense port #### LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 10 - 40 | [145 - 580] | ### PC setting range | Frame | AR (12V) | CR (24V) | |-------|-----------------------------|-----------------------------| | 25C | 100-260 bar [1450-3770] psi | 100-260 bar [1450-3770] psi | | 30C | | | | 38C | | | | 40C | | | | 45C | | | # Normally Open Electric On/Off with Pressure Compensation Controls ### Response/Recovery times | (msec) | Response ¹ | Recovery | |--------|-----------------------|----------| | 25C | 40 | 172 | | 30C | 44 | 152 | ### Response/Recovery times (continued) | (msec) | Response ¹ | Recovery | |--------|-----------------------|----------| | 38C | 49 | 138 | | 40C | 49 | 138 | | 45C | 49 | 138 | ¹ Response and recovery times are calculated without servo control orifice For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. ### Schematic B Outlet S Inlet L1, L2 Case drain X Load sense port ### LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 10 - 40 | [145 - 580] | ### PC setting range | Frame | AN (12V) | CN (24V) | |-------|-----------------|-----------------| | 25C | 100-260 bar | 100-260 bar | | 30C | [1450-3770] psi | [1450-3770] psi | | 38C |] | | | 40C |] | | | 45C |] | | 70 | © Danfoss | January 2022 ### **Normally Closed Electric Proportional with Pressure Compensation Controls** ### Response/Recovery times | | 0.8mm Orifice | | 1.0mm Orifice | | |--------|---------------|----------|---------------|----------| | (msec) | Response | Recovery | Response | Recovery | | 25C | 85 | 518 | 79 | 358 | | 30C | 85 | 518 | 79 | 358 | | 38C | 85 | 518 | 79 | 358 | | 40C | 78 | 490 | 75 | 340 | | 45C | 78 | 490 | 75 | 340 | ### LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 10 - 40 | [145 - 580] | #### Schematic | В | Outlet | |--------|-----------------| | S | Inlet | | L1, L2 | Case drain | | X | Load sense port | ### PC setting range | Frame | AH (12V) | AL (24V) | |-------|-----------------|-----------------| | 25C | 100-260 bar | 100-260 bar | | 30C | [1450-3770] psi | [1450-3770] psi | | 38C | | | | 40C | | | | 45C | | | For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. Electric proportional controls have a unique relationship between margin (LS) setting and low pressure standby. See the graph below for this relationship. © Danfoss | January 2022 Frames E, F, J Electric Proportional Control Low Pressure Standby ### **Normally Open Electric Proportional with Pressure Compensation Controls** ### Response/Recovery times | (msec) | 0.8mm Orifice | | 1.0mm Orifice | | |--------|---------------|----------|---------------|----------| | | Response | Recovery | Response | Recovery | | 25C | 84 | 521 | 78 | 368 | | 30C | 84 | 521 | 78 | 368 | | 38C | 84 | 521 | 78 | 368 | | 40C | 81 | 498 | 74 | 343 | | 45C | 81 | 498 | 74 | 343 | ### LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 10 - 40 | [145 - 580] | ### Schematic B Outlet S Inlet L1, L2 Case drain X Load sense port ### PC setting range | Frame | AX (12V) | CL (24V) | |-------|-----------------------------|-----------------------------| | 25C | 100-260 bar [1450-3770] psi | 100-260 bar [1450-3770] psi | | 30C | | | | 38C | | | | 40C | | | | 45C | | | For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. Electric proportional controls have a unique relationship between margin (LS) setting and low pressure standby. See the graph below for this relationship. # Frames E, F,J, K2 Electric Proportional Control Low Pressure Standby ### **Normally Closed Fan Drive Control** ### PC setting range | Frame | SA (12V) | SC (12V) | SB (24V) | SD (24V) | |-------|-----------------|-----------------|-----------------|-----------------| | 25C | 100-210 bar | 220-260 bar | 100-210 bar | 220-260 bar | | 30C | [1450-3045] psi | [3190-3771] psi | [1450-3045] psi | [3190-3771] psi | | 38C | | | | | | 40C | | | | | | 45C | | | | | # Fan Drive Control Schematic B Outlet S Inlet L1, L2 Case drain # **Input Shafts** | Code | Description | Maximum torque rating ¹
N-m [lbf-in] | Drawing | |------|--|--|---| | C2 | 13 tooth spline
16/32 pitch
(ANSI B92.1 1970 - Class 6e) | 288 [2546] | 13 TOOTH 16/32 PITCH 30° PRESSURE ANGLE 20.638 [0.813] PITCH DIA FILLET ROOT SIDE FIT COMPATIBLE WITH ANSI 89.21-1970 CLASS 6e ALSO MATES WITH FLAT ROOT SIDE FIT Ø18.82 [0.74] MAX Ø21.72 ± 0.09 [0.855 ± 0.004] ©21.72 ± 0.09 [0.855 ± 0.004] COUPLING MUST NOT PROTRUDE BEYOND [1.3] P101993E | | C3 | 15 tooth spline
16/32 pitch
(ANSI B92.1 1970 - Class 6e) | 404 [3575] | THIS POINT 15 TOOTH 16/32 PITCH 30° PRESSURE ANGLE 23.813 (0.938) PITCH DIA FILLET ROOT SIDE FIT COMPATIBLE WITH ANSI B92.1-1970 CLASS 66 ALSO MATES WITH FLAT ROOT SIDE FIT Ø21.92 MAX (0.863) 8± 0.475 [0.31 ±0.02] COUPLING MUST NOT PROTRUDE BEYOND THIS POINT 15 TOOTH 16/32 PITCH 30° PRESSURE ANGLE 23.813 (0.938) PITCH DIA FILLET ROOT SIDE FIT Ø25.27 ± 0.12 [0.995 ±0.005] 10.992 ±0.002] COUPLING MUST NOT PROTRUDE BEYOND THIS POINT P101994E | 74 | © Danfoss | January 2022 | Code | Description | Maximum torque rating ¹
N•m [lbf•in] | Drawing | |------|---|--|---| | К1 | Ø 22.23 mm [0.875 in]
33 mm [1.3 in] | 305 [2700] | 6.35 [0.25]
x 12.7 [0.50] LONG
SQUARE KEY 24.89 ⁴⁰ /
_{-0.25}
[0.98 ⁴⁰ / _{-0.01}] Ø22.2 ±0.025
[0.874 ±0.001] COUPLING MUST NOT
PROTRUDE BEYOND
THIS POINT P101 997E | | K2 | Ø 22.23 mm [0.875 in]
63 mm [2.48 in] long | 305 [2700] | 6.35 [0.25] x 38.1 [1.5] LONG SQUARE KEY 24.89 **0.5 [0.98 **0.01] Ø22.2 ± 0.025 [0.874 ± 0.001] COUPLING MUST NOT PROTRUDE BEYOND THIS POINT P101 998E | 1. See *Input shaft torque ratings* for an explanation of maximum torque. # **Installation Drawings** # **Axial Ported Endcap** P109081 | Code | Description | Port | |------|---|---| | S | System port (inlet), CW rotation shown | O-ring boss per ISO 6149-1, M48x2-6H or M42x2-6H | | | | Ø 31.8 (Axial endcaps) or Ø 38.1 (Radial endcaps)-
Split flange per ISO 6162-1, M10x1.5-6H 18 full thread
depth (Axial) or M12x1.75-6H 22.5 full thread depth
(Radial) | | В | System port (outlet), CW rotation shown | O-ring boss per ISO 6149-1, M33x2-6H or M27x2-6H | | | | Ø 25.4 - Split flange per ISO 6162-1, M10x1.5-6H 18 full thread depth | 76 | © Danfoss | January 2022 ### **Axial Ported Endcap O-ring Boss Ports Installation Dimensions** K2 with axial endcap and LS control ### K2 split flange axial endcap and LS control ### **Radial Ported Endcap Split Flange Ports** Radial endcap - CCW rotation # **Radial Ported Endcap O-ring Boss Ports** Radial endcap - CW rotation P109088 ### **Radial Ported Endcap Installation Dimensions** Front Mounting Flange - SAE-B two bolt ### **Auxiliary Mounting Pads** #### SAE-A auxiliary mounting pad #### **Specifications** | Coupling | 9-tooth | 11-tooth | |---------------------------|----------------------|-----------------------| | Spline minimum engagement | 12.6 mm [0.50 in] | 13.5 mm [0.53 in] | | Maximum torque | 107 N·m [950 lbf·in] | 147 N•m [1300 lbf•in] | #### SAE-B auxiliary mounting pad ### Specifications | Coupling | 13-tooth | 15-tooth | |---------------------------|-----------------------|-----------------------| | Spline minimum engagement | 13.2 mm [0.52 in] | 16.1 mm [0.63 in] | | Maximum torque | 171 N•m [1512 lbf•in] | 171 N•m [1512 lbf•in] | Mounting flange P109077 ### SAE-A Fixed flange # Auxiliary Mounting Pad - Running Cover ### Electric solenoid, left side #### Fan drive control #### **Displacement Limiter** K2 Frame open circuit pumps are available with an optional adjustable displacement limiter. This adjustable stop limits the pump's maximum displacement. # Cross-Section P109150 # Setting range | K2-25C | 0 to 25 cm ³ [0 to 1.53 in ³] | |--------|--| | K2-30C | 0 to 30 cm ³ [0 to 1.83 in ³] | | K2-38C | 0 to 38 cm ³ [0 to 2.32 in ³] | | K2-45C | 0 to 45 cm ³ [0 to 2.75 in ³] | ### Displacement per turn | K2-25C | 3.86 cm³/rev [0.24 in³/rev] | |--------|-----------------------------| | K2-30D | 3.86 cm³/rev [0.24 in³/rev] | | K2-38C | 3.86 cm³/rev [0.24 in³/rev] | | K2-45D | 4.64 cm³/rev [0.28 in³/rev] | ### Installation Dimensions Displacement Limiter Option ${\bf L0AAA}$ P109080 #### Design Series 45 Frame L and K pumps have a single servo piston design with a cradle-type swashplate set in polymer-coated journal bearings. A bias spring and internal forces increase swashplate angle. The servo piston decreases swashplate angle. Nine reciprocating pistons displace fluid from the pump inlet to the pump outlet as the cylinder block rotates on the pump input shaft. The block spring holds the piston slippers to the swashplate via the slipper retainer. The cylinder block rides on a bi-metal valve plate optimized for high volumetric efficiency and low noise. Tapered roller bearings support the input shaft and a viton lip-seal protects against shaft leaks. An adjustable one spool (PC only, not shown) or two spool (LS and remote PC) control senses system pressure and load pressure (LS controls). The control ports system pressure to the servo piston, adjusting swashplate angle to control pump output flow. #### Frame K/L cross section # **Technical Specifications** | | | | L Frame | | K Frame | | |---|--------------------------------|------------------------------|----------------------|----------------------|----------------------|----------------------| | | | Unit | L25C | L30D | К38С | K45D | | Maximum Displace | ement | cm³ [in³] | 25 [1.53] | 30 [1.83] | 38 [2.32] | 45 [2.75] | | Working Input | Minimum | min -1 (rpm) | 500 | 500 | 500 | 500 | | Speed | Continuous | | 3200 | 3200 | 2650 | 2650 | | | Maximum | | 3600 | 3600 | 2800 | 2800 | | Working Pressure | Continuous | bar [psi] | 260 [3770] | 210 [3045] | 260 [3770] | 210 [3045] | | | Maximum | 1 | 350 [5075] | 300 [4350] | 350 [5075] | 300 [4350] | | Flow at rated speed | d (theoretical) | l/min
[US gal/min] | 80
[21] | 96
[25.4] | 100.7
[26.6] | 119.3
[31.5] | | Input torque at maximum
displacement (theoretical)
at 49° C [120°F] | | N•m/bar
[lbf•in/1000 psi] | 0.398
[243] | 0.477
[291] | 0.605
[369] | 0.716
[438] | | Mass moment of ir rotating componer | | kg•m²
[slug•ft²] | 0.00169
[0.00125] | 0.00161
[0.00119] | 0.00184
[0.00135] | 0.00203
[0.00150] | | Weight -
Axial ports | | kg [lb] | 19.0 [41.9] | | | - | | Weight -
Radial ports | | | 24.0 [52.9] | | | | | External Shaft
Loads | External
moment (Me) | N•m [lbf•in] | 61 [540] | 61 [540] | 76 [673] | 76 [673] | | | Thrust in (Tin),
out (Tout) | N [lbf] | 1000 [225] | 1000 [225] | 1200 [270] | 1200 [270 | | Mounting flange load moments | Vibratory
(continuous) | N•m [lbf•in] | 1005 [8895] | • | • | 1 | | | Shock
(maximum) | | 3550 [31420] | | | | ### Order code ### Code description | Code | Description | |------|--| | R | Product Frame, Variable Open Circuit Pump | | S | Rotation | | Р | Displacement | | С | Control Type | | D | Pressure Compensator Setting | | E | Load Sense Setting | | F | Not Used | | G | Choke Orifice | | Н | Gain Orifice | | J | Input Shaft/Auxiliary Mount/Endcap | | К | Shaft Seal/Front Mounting Flange/Housing Ports | | L | Displacement Limiter | | М | Special Hardware | | N | Special Features | ### R Frame | | | L Frame | | K Frame | | |----|--|---------|------|---------|------| | | | 025C | 030D | 038C | 045D | | KR | K Frame, variable displacement open circuit pump | | | • | • | | LR | L Frame, variable displacement open circuit pump | • | • | | | ### S Rotation | | | L Frame | | K Frame | | |---|------------------------------|---------|------|---------|------| | | | 025C | 030D | 038C | 045D | | L | Left Hand (counterclockwise) | • | • | • | • | | R | Right Hand (clockwise) | • | • | • | • | # P Displacement | 025C | 025 cm ³ /rev [1.53 in ³ /rev] | • | | | | |------|--|---|---|---|---| | 030D | 030 cm ³ /rev [1.83 in ³ /rev] | | • | | | | 038C | 038 cm ³ /rev [2.32 in ³ /rev] | | | • | | | 045D | 045 cm ³ /rev [2.75 in ³ /rev] | | | | • | # C Control type | | | L Frame | L Frame | | | |----|--|---------|---------|------|------| | | | 025C | 030D | 038C | 045D | | PC | Pressure Compensator | • | • | • | • | | RP | Remote Pressure Compensator | • | • | • | • | | LB | Load Sensing/Pressure Comp. w/Bleed
Orifice | • | • | • | • | | LS | Load Sensing/Pressure Compensator | • | • | • | • | | EA | Electric On/Off w/Pressure Comp. (NO, 12VDC) | • | • | • | • | | EG | Electric On/Off w/Pressure Comp. (NO, 24VDC) | • | • | • | • | | EB | Electric On/Off w/Pressure Comp. (NC, 12VDC) | • | • | • | • | | EE | Electric On/Off w/Pressure Comp. (NC, 24VDC) | • | • | • | • | | EK | Electric Proportional Pressure Control w/
Pressure Comp. (NO,12VDC) | • | • | • | • | | EL | Electric Proportional Pressure Control w/
Pressure Comp. (NO,24VDC) | • | • | • | • | | EM | Electric Proportional Pressure Control w/
Pressure Comp. (NC,12VDC) | • | • | • | • | | EN | Electric Proportional Pressure Control w/
Pressure Comp. (NC,24VDC) | • | • | • | • | # DPC setting (2 digit code, 10 bar increments) | Example | 25 = 250 bar (3625 psi) | | | | | |---------|-----------------------------------|---|---|---|---| | 10-21 | 100 to 210 bar [1450 to 3045 psi] | • | • | • | • | | 22-26 | 220 to 260 bar [3190 to 3771 psi] | • | | • | | # E Load sensing setting (2 digit code, 1 bar increments) | | Example | 20 = 20 bar (290 psi) | | | | | |--|---------|---|---|---|---|---| | | 12–36 | 12 to 36 bar [174 to 522 psi] | • | • | • | • | | | NN | Not applicable (pressure compensated only controls) | • | • | • | • | #### F Not used | | | L Frame | | K Frame | | |----|----------------|---------|------|---------|------| | | | 025C | 030D | 038C | 045D | | NN | Not applicable | • | • | • | • | ### G Servo Control Orifice | N | None (standard) | • | • | • | • | |---|---|---|---|---|---| | Е | 0.8 mm diameter - Electrical proportional controls only | • | • | • | • | | F | 1.0 mm dismeter - Electrical proportional controls only | • | • | • | • | | J | 0.8 mm diameter - All other controls | • | • | • | • | | K | 1.0 mm dismeter - All other controls | • | • | • | • | ### H Gain Orifice | 3 | 1.0 mm diameter | • | • | • | • | |---|-----------------|---|---|---|---| # J Input Shaft | C2 | 13 tooth, 16/32 pitch | |----|----------------------------------| | C3 | 15 tooth, 16/32 pitch | | K1 | 0.875 inch straight keyed | | K2 | 0.875 inch straight keyed (long) | | T1 | 1.0 inch Taper | ### Auxiliary Mount/Endcap Style | Auxiliary
Description | Endcap Style | Icap Style Inlet Porting Outlet Endcap Description
Porting | | Endcap Description | Code | |--------------------------|--|--|---|--|------| | None | Axial | O-Ring Boss | O-Ring Boss | Inlet - SAE O-Ring boss port (1.875 inch
threads)
Outlet - SAE O-Ring boss port (1.3125 inch
threads)
Control - Left Side | NF | | None | | | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt
(1.25 inch port 0.4375 inch threads)
Outlet - Code 61 Split Flange Port 4 Bolt (1
inch port 0.375 inch threads)
Control - Left Side | NM | | None | Axial Split Flange Split Flange Inlet - Code 61 Split (1.25 inch port M10 to Outlet - Code 61 Split (2.25 inch port M10 to Outlet - Code 61 Split (3.25 inch por | | Inlet - Code 61 Split Flange Port 4 Bolt
(1.25 inch port M10 threads)
Outlet - Code 61 Split Flange Port 4 Bolt (1
inch port M10 threads)
Control - Left Side | NP | | # Auxiliary Mount/Endcap Style (continued) | None | Radial | O-Ring Boss | O-Ring Boss | Inlet - SAE O-Ring boss port (1.875 inch
threads)
Outlet - SAE O-Ring boss port (1.3125 inch
threads)
Control - Right Side | NG | |--------------------|--------|--------------|--------------|---|----| | None | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) Control - Right Side | NK | | None | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch port M12 threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port M10 threads) Control - Right Side | NR | | Running
Cover | Radial | O-Ring Boss | O-Ring Boss | Inlet - SAE O-Ring boss port (1.875 inch
threads)
Outlet - SAE O-Ring boss port (1.3125 inch
threads)
Control - Right Side | RG | | Running
Cover | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) Control - Right Side | RK | | SAE-A, 11
teeth | Radial | O-Ring Boss | O-Ring Boss | Inlet - SAE O-Ring boss port (1.875 inch
threads)
Outlet - SAE O-Ring boss port (1.3125 inch
threads)
Control - Right Side | TG | | SAE-A, 9
teeth | Radial | O-Ring Boss | O-Ring Boss | Inlet - SAE O-Ring boss port (1.875 inch
threads)
Outlet - SAE O-Ring boss port (1.3125 inch
threads)
Control - Right Side | AG | | SAE-A, 9
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) Control - Right Side | AK | | SAE-B, 13
teeth | Radial | O-Ring Boss | O-Ring Boss | Inlet - SAE O-Ring boss port (1.875 inch
threads)
Outlet - SAE O-Ring boss port (1.3125 inch
threads)
Control - Right Side | BG | | SAE-B, 13
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) Control - Right Side | вк | | SAE-B, 13
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch port M12 threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port M10 threads) Control - Right Side | BR | # Auxiliary Mount/Endcap Style (continued) | SAE-BB, 15
teeth | Radial | O-Ring Boss | O-Ring Boss | Inlet - SAE O-Ring boss port (1.875 inch
threads)
Outlet - SAE O-Ring boss port (1.3125 inch
threads)
Control - Right Side | VG | |---------------------|--------|--------------|--------------|---|----| | SAE-BB, 15
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) Control - Right Side | VK | # J Input Shaft/Auxiliary Mount/Endcap Available Combinations | | L Frame | | K Frame | | |--------|---------|------|---------|------| | | 025C | 030D | 038C | 045D | | C2AG* | • | • | • | • | | C2BG* | • | • | • | • | | C2BK* | • | • | • | • | | C2NF* | • | • | • | • | | C2NG** | • | • | • | • | | C2NK** | • | • | • | • | | C2NM** | | | • | • | | C2NP** | | | • | • | | C2NR* | | | • | • | | C2RG* | • | • | • | • | | C2TG* | • | • | • | • | | C3AG* | • | • | • | • | | C3AK** | | | • | • | | C3BG* | • | • | • | • | | C3NF* | • | • | • | • | | C3NG** | • | • | • | • | | C3NK** | | | • | • | | C3RG* | • | • | • | • | ^{*} PLB or AAA Displacement limiter options only ^{**} KNB Displacement limiter options only | | L Frame | L Frame | | | |--------|---------|---------|------|------| | | 025C | 030D | 038C | 045D | | C3TG* | • | • | • | • | | C3VG* | | | • | • | | K1AG* | • | • | | | | K1NF* | • | • | • | • | | K1NG** | • | • | • | • | | K1RG* | • | • | | | | K2AG* | • | • | • | • | | K2BG* | • | • | • | • | | | L Frame | | K Frame | | |--------|---------|------|---------|------| | | 025C | 030D | 038C | 045D | | K2NF* | • | • | • | • | | K2NG** | • | • | • | • | | K2NM** | | | • | • | | K2RG* | • | • | • | • | | T1BG* | | | • | • | | T1NF* | • | • | • | • | | T1NG** | • | • | • | • | | T1RG* | • | • | • | • | ### K Shaft seal | | | L Frame | | K Frame | | |---|----------------|---------|------|---------|------|
| | | 025C | 030D | 038C | 045D | | Α | Single (Viton) | • | • | • | • | # K Mounting flange and housing port style | | | L Frame | | K Frame | | |---|---|---------|------|---------|------| | | | 025C | 030D | 038C | 045D | | 6 | SAE-B Flange 2-bolt/SAE O-ring boss ports | • | • | • | • | ### K Not used | N | Not applicable | • | • | • | • | |---|----------------|---|---|---|---| # L Displacement limiter | AAA | Adjustable, factory set at max angle | • | • | • | • | |-----|--------------------------------------|---|---|---|---| | KNB | None | • | • | • | • | | PLB | None (plugged) | • | • | • | • | # M Special hardware | NNN | None | • | • | • | • | |-----|------|---|---|---|---| ### N Special features | NNN | 1 | None | • | • | • | • | |-----|---|------|---|---|---|---| #### **Performance L25C** Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS]. 3400 Shaft Speed min⁻¹(rpm) 3600 The chart above shows allowable inlet pressure and speed at various displacements. Greater speeds and lower inlet pressures are possible at reduced displacement. Operating outside of acceptable limits reduces pump life. 4000 0.6 3000 #### **Performance L30D** Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS]. The Efficiency chart shows allowable inlet pressure and speed at various displacements. Greater speeds and lower inlet pressures are possible at reduced displacement. Operating outside of acceptable limits reduces pump life. #### Noise | dB(A) | 210 bar [3045 psi] | | |-------|--------------------|-------------| | | 1800 min-1 (rpm) | Rated Speed | | L30D | 66 | 70 | #### **Performance K38C** Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS]. The chart above shows allowable inlet pressure and speed at various displacements. Greater speeds and lower inlet pressures are possible at reduced displacement. Operating outside of acceptable limits reduces pump life. #### **Performance K45D** Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS]. The chart above shows allowable inlet pressure and speed at various displacements. Greater speeds and lower inlet pressures are possible at reduced displacement. Operating outside of acceptable limits reduces pump life. # **Hydraulic Controls** ### **Pressure Compensated Controls** ### Response/Recovery Times | (ms) | Response | Recovery | |------|----------|----------| | L25C | 30 | 90 | | L30D | 30 | 100 | | K38C | 30 | 105 | | K45D | 30 | 110 | ### PC Setting Range | Model | bar | psi | |-------|---------|-----------| | L25C | 100–260 | 1450–3770 | | L30D | 100–210 | 1450–3045 | | K38C | 100–260 | 1450–3770 | | K45D | 100–210 | 1450–3045 | #### Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port ### **Remote Pressure Compensated Controls** ### Response/Recovery Times | (ms) | Response | Recovery | |------|----------|----------| | L25C | 30 | 90 | | L30D | 30 | 100 | | K38C | 30 | 105 | | K45D | 30 | 110 | ### PC Setting Range | Model | bar | psi | |-------|---------|-----------| | L25C | 100–260 | 1450–3770 | | L30D | 100–210 | 1450–3045 | | K38C | 100–260 | 1450–3770 | | K45D | 100–210 | 1450–3045 | #### Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port X = Remote PC port ### **Load Sensing/Pressure Compensated Controls** ### Response/Recovery Times | (ms) | Response | Recovery | |------|----------|----------| | L25C | 30 | 70 | | L30D | 30 | 70 | | K38C | 30 | 80 | | K45D | 30 | 80 | # PC Setting Range | Model | bar | psi | |-------|---------|-----------| | L25C | 100–260 | 1450–3770 | | L30D | 100–210 | 1450–3045 | | K38C | 100–260 | 1450–3770 | | K45D | 100–210 | 1450–3045 | ### LS setting range | Mod | el | bar | psi | |-----|----|-------|---------| | All | | 12-40 | 174-580 | ### Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port X = LS signal port # Load Sensing Control with Bleed Orifice / Pressure Compensated ### Response/Recovery Times | (ms) | Response | Recovery | |------|----------|----------| | L25C | 30 | 70 | | L30D | 30 | 70 | | K38C | 30 | 80 | | K45D | 30 | 80 | # PC Setting Range | Model | bar | psi | |-------|---------|-----------| | L25C | 100–260 | 1450–3770 | | L30D | 100–210 | 1450–3045 | | K38C | 100–260 | 1450–3770 | | K45D | 100–210 | 1450–3045 | # LS setting range | Model | bar | psi | |-------|-------|---------| | All | 12-40 | 174-580 | 98 | © Danfoss | January 2022 # LB Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port X = LS signal port ### **Electric Controls** # Connector | Description | Quantity | Ordering Number | |--------------------------------|----------|-------------------------| | Mating Connector | 1 | Deutsch® DT06-2S | | Wedge Lock | 1 | Deutsch® W25 | | Socket Contact (16 and 18 AWG) | 2 | Deutsch® 0462-201-16141 | | Danfoss mating connector kit | 1 | K29657 | # **Continuous Duty Operating Range** Continuous duty operating range # **Solenoid Data - Normally Closed** | Voltage | 12V | 24V | |---|---------|---------| | Threshold Control [mA] (260/210 bar PC setting, oil temp X) | 400/600 | 200/300 | | End Current [mA] (20 bar LS setting, oil temp X) | 1200 | 600 | #### **Solenoid Data - Normally Open** | Voltage | 12V | 24V | |--|-----------|---------| | Threshold Control [mA] (20 bar LS setting, oil temp X) | 0 | 0 | | End Current [mA] (260/210 bar PC setting, oil temp X) | 1000/1100 | 500/550 | ### Hysteresis | Frame | Hysteresis | | |------------|---|--| | L25C, K38C | Input hysteresis <4% (control current): Output hysteresis <4.5% (system pressure) | | | L30D, K45D | Input hysteresis <4% (control current): Output hysteresis <4.5% (system pressure) | | # Normally Closed Electric On/Off with Pressure Compensation Controls # Response/Recovery times* | (msec) | Response | Recovery | |--------|----------|----------| | L25C | 50 | 140 | | L30D | 50 | 130 | | K38C | 50 | 140 | | K45D | 50 | 130 | ^{*} Without servo control orifice: response/recovery from solenoid energized/de-energized. 100 | © Danfoss | January 2022 ### PC setting range | Frame | EB (12V) | EE (24V) | |-------|-----------------|-----------------| | L25C | 100-260 bar | 100-260 bar | | K38C | [1450-3370] psi | [1450-3370] psi | | L30D | 100-210 bar | 100-210 bar | | K45D | [1450-3045] psi | [1450-3045] psi | ### LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 12 - 40 | [174 - 580] | #### Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port X = Load Sense Port For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. ### Normally Open Electric On/Off with Pressure Compensation Controls #### Response/Recovery times* | (msec) | Response | Recovery | |--------|----------|----------| | L25C | 50 | 140 | | L30D | 50 | 130 | | K38C | 50 | 140 | | K45D | 50 | 130 | ^{*} Without servo control orifice: response/recovery from solenoid energized/de-energized. ### PC setting range | Frame | EA (12V) | EG (24V) | |-------|-----------------|-----------------| | L25C | 100-260 bar | 100-260 bar | | K38C | [1450-3370] psi | [1450-3370] psi | | L30D | 100-210 bar | 100-210 bar | | K45D | [1450-3045] psi | [1450-3045] psi | ### LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 12 - 40 | [174 - 580] | #### Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port X = Load Sense Port For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. # Normally Closed Electric Proportional Controls with PC and LS Compensation ### Response/Recovery times | | 0.8mm Orifice | | 1.0mm Orifice | | |--------|---------------|----------|---------------|----------| | (msec) | Response | Recovery | Response | Recovery | | L25C | 80 | 610 | 70 | 380 | | L30D | 60 | 610 | 55 | 380 | | K38C | 80 | 550 | 70 | 380 | | K45D | 60 | 550 | 55 | 380 | 102 | © Danfoss | January 2022 ### PC setting range | Frame | EM (12V) | EN (24V) | |-------|-----------------|-----------------| | L25C | 100-260 bar | 100-260 bar | | K38C | [1450-3370] psi | [1450-3370] psi | | L30D | 100-210 bar | 100-210 bar | | K45D | [1450-3045] psi | [1450-3045] psi | ### LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 12 - 40 | [174 - 580] | #### Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port X = Load Sense Port For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. Electric proportional controls have a unique relationship between margin (LS) setting and low pressure standby. See the graph below for this relationship. Frames K, L Electric Proportional Control Low Pressure Standby # Normally Open Electric Proportional Controls with PC and LS Compensation # Response/Recovery times | | 0.8mm Orifice | | 1.0mm Orifice | | |--------|---------------|----------|---------------|----------| | (msec) | Response | Recovery | Response | Recovery | | L25C | 80 | 610 | 70 | 380 | | L30D | 60 | 610 | 55 | 380 | | K38C | 80 | 550 | 70 | 380 | | K45D | 60 | 550 | 55 |
380 | # PC setting range | Frame | EK (12V) | EL (24V) | | |-------|-----------------|-----------------|--| | L25C | 100-260 bar | 100-260 bar | | | K38C | [1450-3370] psi | [1450-3370] psi | | | L30D | 100-210 bar | 100-210 bar | | | K45D | [1450-3045] psi | [1450-3045] psi | | # LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 12 - 40 | [174 - 580] | 104 | © Danfoss | January 2022 #### Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port X = Load Sense Port For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. Electric proportional controls have a unique relationship between margin (LS) setting and low pressure standby. See the graph below for this relationship. Frames K, L Electric Proportional Control Low Pressure Standby BC152886483703en-001201 # Frames L and K # Input shafts | Code | Description | Maximum torque rating ¹
N·m [lbf·in] | Drawing | |------|--|--|--| | C2 | 13 tooth spline
16/32 pitch
(ANSI B92.1 1970 - Class 6e) | 288 [2546] | ### 13 TOOTH 16/32 PITCH 30° PRESSURE ANGLE 20.638 [0.813] PITCH DIA FILLET ROOT SIDE FIT COMPATIBLE WITH ANSI 892.1-1970 CLASS 6e ALSO MAITES WITH FLAT ROOT SIDE FIT COMPATIBLE WITH ANSI 892.1-1970 CLASS 6e ALSO MAITES WITH FLAT ROOT SIDE FIT With a company of the com | | C3 | 15 tooth spline
16/32 pitch
(ANSI B92.1 1970 - Class 6e) | 404 [3575] | ### 15 TOOTH 16/32 PITCH 30° PRESSURE ANGLE 23.813 [0.38] PITCH DIA FILLET ROOT SIDE FIT COMPATIBLE WITH ANSI B92.1-1970 CLASS 6e ALSO MATES WITH FLAT ROOT SIDE FIT #### 25.27 ± 0.12 [0.995 ± 0.005] #### 23.35 ± 0.5 [0.92 ± 0.02] COUPLING MUST NOT PROTRUDE BEYOND THIS POINT P101994E | | T1 | Ø 25.4 mm [1 in]
1:8 taper (SAE J501) | 362 [3200] | 69.89 REF [2.75] 60.299 **0.005* [0.248 **.000] [0.248 **.000] [0.254 **.000] [0.875 **.0000] [0.875 **.0000] [0.877 **.0000] [0.87] 25.4 [1] 70.22.22 GAUGE 3/4-16UNF-2A THD 125 TAPER PER METER COMPATIBLE WITH SAE J501 25.4 [1] NOMINAL SHAFT DIAMETER 9.42 ± 0.3 [0.37 ± 0.01] COUPLING MUST NOT PROTRUDE BEYOND THIS POINT | 106 | © Danfoss | January 2022 | Code | Description | Maximum torque rating ¹
N·m [lbf·in] | Drawing | |------|---|--|---| | K1 | Ø 22.23 mm [0.875 in]
33 mm [1.3 in] | 305 [2700] | 6.35 [0.25] x 12.7 [0.50] LONG SQUARE KEY 24.89 *0.05 [0.98 *0.01] Ø22.2 ± 0.025 [0.874 ± 0.001] COUPLING MUST NOT PROTRUDE BEYOND THIS POINT P101 997E | | K2 | Ø 22.23 mm [0.875 in]
63 mm [2.48 in] long | 305 [2700] | 6.35 [0.25] x 38.1 [1.5] LONG SQUARE KEY 24.89 *0.3 [0.315 ±0.035] COUPLING MUST NOT PROTRUDE BEYOND THIS POINT P101 998E | 1. See *Input shaft torque ratings* for an explanation of maximum torque. # **Installation drawings** ### **Axial Ported Endcap** # **Axial Ported Endcap Installation Dimensions** ### **Radial Ported Endcap Split Flange Ports** # **Radial Ported Endcap O-ring Boss Ports** ### **Radial Ported Endcap Rear View** # **Radial Ported Endcap Installation Dimensions** # Front Mounting Flange - SAE-B two bolt P108 421E 110 | $^{\mathbb{O}}$ Danfoss | January 2022 # **Auxiliary Mounting Pads** #### SAE-A auxiliary mounting pad #### **Specifications** | Coupling | 9-tooth | 11-tooth | |---------------------------|----------------------|-----------------------| | Spline minimum engagement | 12.6 mm [0.50 in] | 13.5 mm [0.53 in] | | Maximum torque | 107 N•m [950 lbf•in] | 147 N•m [1300 lbf•in] | ### SAE-B auxiliary mounting pad © Danfoss | January 2022 BC152886483703en-001201 | 111 ### Specifications | Coupling | 13-tooth | 15-tooth | |---------------------------|-----------------------|-----------------------| | Spline minimum engagement | 13.2 mm [0.52 in] | 16.1 mm [0.63 in] | | Maximum torque | 171 N•m [1512 lbf•in] | 171 N•m [1512 lbf•in] | # Auxiliary Mounting Pad - Running Cover ### **Electric Solenoid, Left Side** # **Electric Solenoid, Right Side** 112 | © Danfoss | January 2022 BC152886483703en-001201 # **Displacement limiter** L and K Frame open circuit pumps are available with an optional adjustable displacement limiter. This adjustable stop limits the pump's maximum displacement. #### Cross-Section # Setting range | L25C | 0 to 25 cm ³ [0 to 1.53 in ³] | |------|--| | L30D | 0 to 30 cm ³ [0 to 1.83 in ³] | | K38C | 0 to 38 cm ³ [0 to 2.32 in ³] | | K45D | 0 to 45 cm ³ [0 to 2.75 in ³] | ### Displacement per turn | L25C | 1.20 cm³/rev [0.07 in³/rev] | |------|-----------------------------| | L30D | 1.43 cm³/rev [0.09 in³/rev] | | K38C | 1.81 cm³/rev [0.11 in³/rev] | | K45D | 2.15 cm³/rev [0.13 in³/rev] | ### **Installation Dimensions** P104 065E #### Design Series 45 Frame J pumps have a single servo piston design with a cradle-type swashplate set in polymer-coated journal bearings. A bias spring and internal forces increase swashplate angle. The servo piston decreases swashplate angle. Nine reciprocating pistons displace fluid from the pump inlet to the pump outlet as the cylinder block rotates on the pump input shaft. The block spring holds the piston slippers to the swashplate via the slipper retainer. The cylinder block rides on a bi-metal valve plate optimized for high volumetric efficiency and low noise. Tapered roller bearings support the input shaft and a viton lipseal protects against shaft leaks. An adjustable one spool (PC only, not shown) or two spool (LS and PC) control senses system pressure and load pressure (LS controls). The control ports system pressure to the servo piston to control pump output flow. Frame J cross section # **Technical Specifications** | | | | J Frame | | | | | |---|--------------------------------|------------------------------|---|----------------------|----------------------|----------------------|----------------------| | | | Unit | S45B | S51B | S60B | S65C | S75C | | Maximum Displa | acement | cm³ [in³] | 45 [2.75] | 51 [3.11] | 60 [3.66] | 65 [3.97] | 75 [4.58] | | Working Input | Minimum | min -1 (rpm) | 500 | 500 | 500 | 500 | 500 | | Speed | Continuous | | 2800 | 2700 | 2600 | 2500 | 2400 | | | Maximum | | 3360 | 3240 | 3120 | 3000 | 2880 | | Working | Continuous | bar [psi] | 310 [4500] | 310 [4500] | 310 [4500] | 260 [3770] | 260 [3770] | | Pressure | Maximum | | 400 [5800] | 400 [5800] | 400 [5800] | 350 [5075] | 350 [5075] | | Flow at rated speed (theoretical) | | l/min
[US gal/min] | 126
[33.3] | 138
[36.4] | 156
[41.2] | 162
[42.9] | 180 [47.5] | | Input torque at I
displacement (th
at 49° C [120°F] | | N•m/bar
[lbf•in/1000 psi] | 0.717 0.812 0.955 1.035 1.194 [[437.4] [495.7] [583.2] [631.8] | | 1.194 [729] | | | | Mass moment o internal rotating | | kg•m²
[slug•ft²] | 0.00455
[0.00336] | 0.00455
[0.00336] | 0.00455
[0.00336] | 0.00433
[0.00319] | 0.00433
[0.00319] | | Weight | Axial ports | kg [lb] | 23.1 [51.0] | | | | | | | Radial ports | | | | 27.3 [60.2] | | | | External Shaft
Loads | External
moment (Me) | N•m [lbf•in] | 226 [2000] | 226 [2000] | 226 [2000] | 226 [2000] | 226 [2000] | | | Thrust in (Tin),
out (Tout) | N [lbf] | 2200 [495] | 2200 [495] | 2200 [495] | 2200 [495] | 2200 [495] | | Mounting
flange load
moments | Vibratory
(continuous) | N•m [lbf•in] |
SAE-C: 1500 | [13300], SAE | -B: 735 [6600] | Ì | | | | Shock
(maximum) | | SAE-C: 5600 | [49600], SAE | -B: 2600 [231 | 00] | | ### Order code # Code description | Code | Description | |------|--| | R | Product Frame, Variable Open Circuit Pump | | S | Rotation | | Р | Displacement | | С | Control Type | | D | Pressure Compensator Setting | | E | Load Sense Setting | | F | Not Used | | G | Choke Orifice | | Н | Gain Orifice | | J | Input Shaft/Auxiliary Mount/Endcap | | К | Shaft Seal/Front Mounting Flange/Housing Ports | | L | Displacement Limiter | | М | Special Hardware | | N | Special Features | # R Product | | | J Frame | | | | | |----|--|---------|------|------|------|------| | | | S45B | S51B | S60B | S65C | S75C | | JR | J Frame, variable displacement open circuit pump | • | • | • | • | • | # S Rotation | L | Left Hand (counterclockwise) | • | • | • | • | • | |---|------------------------------|---|---|---|---|---| | R | Right Hand (clockwise) | • | • | • | • | • | # P Displacement | S45B | 045 cm ³ /rev [2.75 in ³ /rev] | • | | | | | |------|--|---|---|---|---|---| | S51B | 051 cm ³ /rev [3.11 in ³ /rev] | | • | | | | | S60B | 060 cm ³ /rev [3.66 in ³ /rev] | | | • | | | | S65C | 065 cm ³ /rev [3.97 in ³ /rev] | | | | • | | | S75C | 075 cm ³ /rev [4.58 in ³ /rev] | | | | | • | # C Control type | | | J Frame | | | | | |-----|--|---------|------|------|------|------| | | | S45B | S51B | S60B | S65C | S75C | | PC | Pressure Compensator | | • | • | • | • | | BC* | Pressure Compensator [>280 bar] | | • | • | | | | RP | Remote Pressure Compensator | • | • | • | • | • | | BP* | Remote Pressure Compensator [>280 bar] | • | • | • | | | | LS | Load Sensing/Pressure Comp. | | • | • | • | • | | BS* | Load Sensing/Pressure Comp. [>280 bar] | • | • | • | | | | LB | Load Sensing/Pressure Comp. with internal bleed orifice | • | • | • | • | • | | BB* | Load Sensing/Pressure Comp. with internal bleed orifice [>280 bar] | • | • | • | | | | AN | Electric On/Off w/Pressure Comp.
(NO, 12VDC) Left | • | • | • | • | • | | CN | Electric On/Off w/Pressure Comp.
(NO, 24VDC) Left | • | • | • | • | • | | AR | Electric On/Off w/Pressure Comp.
(NC, 12VDC) Left | • | • | • | • | • | | CR | Electric On/Off w/Pressure Comp.
(NC, 24VDC) Left | • | • | • | • | • | | AF | Electric On/Off w/Pressure Comp.
(NO, 12VDC) Right | • | • | • | • | • | | AT | Electric On/Off w/Pressure Comp.
(NO, 24VDC) Right | • | • | • | • | • | | AG | Electric On/Off w/Pressure Comp.
(NC, 12VDC) Right | • | • | • | • | • | | AY | Electric On/Off w/Pressure Comp.
(NC, 24VDC) Right | • | • | • | • | • | | BN* | Electric On/Off w/Pressure Comp.
(NO, 12VDC) [>280 bar] Left | • | • | • | | | 116 | © Danfoss | January 2022 # C Control type (continued) | | | J Frame | | | | | |-----|---|---------|------|------|------|------| | | | S45B | S51B | S60B | S65C | S75C | | DN* | Electric On/Off w/Pressure Comp.
(NO, 24VDC) [>280 bar] Left | • | • | • | | | | BR* | Electric On/Off w/Pressure Comp.
(NC, 12VDC) [>280 bar] Left | • | • | • | | | | DR* | Electric On/Off w/Pressure Comp.
(NC, 24VDC) [>280 bar] Left | • | • | • | | | | BF* | Electric On/Off w/Pressure Comp.
(NO, 12VDC) [>280 bar] Right | • | • | • | | | | DF* | Electric On/Off w/Pressure Comp.
(NO, 24VDC) [>280 bar] Right | • | • | • | | | | BE* | Electric On/Off w/Pressure Comp.
(NC, 12VDC) [>280 bar] Right | • | • | • | | | | BG* | Electric On/Off w/Pressure Comp.
(NC, 24VDC) [>280 bar] Right | • | • | • | | | | AX | Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) Left | • | • | • | • | • | | CL | Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) Left | • | • | • | • | • | | АН | Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) Left | • | • | • | • | • | | AL | Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) Left | • | • | • | • | • | | AW | Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) Right | • | • | • | • | • | | CK | Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) Right | • | • | • | • | • | | AV | Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) Right | • | • | • | • | • | | AK | Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) Right | • | • | • | • | • | | BX* | Electric Proportional Pressure Control
w/Pressure Comp. (NO,12VDC) [>280
bar] Left | • | • | • | | | | DL* | Electric Proportional Pressure Control
w/Pressure Comp. (NO,24VDC) [>280
bar] Left | • | • | • | | | | BH* | Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) [>280 bar] Left | • | • | • | | | | BL* | Electric Proportional Pressure Control
w/Pressure Comp. (NC,24VDC) [>280
bar] Left | • | • | • | | | | BW* | Electric Proportional Pressure Control
w/Pressure Comp. (NO,12VDC) [>280
bar] Right | • | • | • | | | | DK* | Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) [>280 bar] Right | • | • | • | | | | BM* | Electric Proportional Pressure Control
w/Pressure Comp. (NC,12VDC) [>280
bar] Right | • | • | • | | | | BK* | Electric Proportional Pressure Control
w/Pressure Comp. (NC,24VDC) [>280
bar] Right | • | • | • | | | # C Control type (continued) | | | J Frame | | | | | |-----|--|---------|------|------|------|------| | | | S45B | S51B | S60B | S65C | S75C | | FA* | Electric On/Off Dump valve w/
Pressure Comp. + Load Sense (NC,
12VDC) Right | | • | • | | | | FB* | Electric On/Off Dump valve w/
Pressure Comp. + Load Sense (NC,
12VDC) Left | • | • | • | • | • | | FE* | Electric On/Off Dump valve w/
Pressure Comp. + Load Sense (NC,
24VDC), Left | • | • | • | • | • | | FM* | Electric On/Off Dump valve w/
Pressure Comp. + Load Sense (NC,
24VDC), Right | • | • | • | • | • | | TA | Electric Torque Limiting w/Pressure
Comp. (NC,12VDC) Left | • | • | • | • | • | | ТВ | Electric Torque Limiting w/Pressure
Comp. (NC,24VDC) Left | • | • | • | • | • | | TC | Electric Torque Limiting w/Pressure
Comp. (NC,12VDC) Left | • | • | • | • | • | | TD | Electric Torque Limiting w/Pressure
Comp. (NC,24VDC) Left | • | • | • | • | • | | TE | Electric Torque Limiting w/Pressure
Comp. (NC,12VDC) Right | • | • | • | • | • | | TF | Electric Torque Limiting w/Pressure
Comp. (NC,24VDC) Right | • | • | • | • | • | | TG | Electric Torque Limiting w/Pressure
Comp. (NC,12VDC) Right | • | • | • | • | • | | TH | Electric Torque Limiting w/Pressure
Comp. (NC,24VDC) Right | • | • | • | • | • | | SA | Pressure Comp (12 Vdc), 100-210 Bar
- Left | | | • | • | • | | SB | Pressure Comp (24 Vdc), 100-210 Bar
- Left | | | • | • | • | | SC | Pressure Comp (12 Vdc), 220-310 Bar
- Left | | | • | • | • | | SD | Pressure Comp (24 Vdc), 220-310 Bar
- Left | | | • | • | • | | SE | Pressure Comp (12 Vdc), 100-210 Bar
- Right | | | • | • | • | | SF | Pressure Comp (24 Vdc), 100-210 Bar
- Right | | | • | • | • | | SG | Pressure Comp (12 Vdc), 220-310 Bar
- Right | | | • | • | • | | SH | Pressure Comp (24 Vdc), 220-310 Bar
- Right | | | • | • | • | $^{^{}st}$ Not available on 65cc and 75cc pumps ${\sf Left-E-Frame: CW\ Only, F-Frame: CW\ Only, J-frame: CW\ Axial, CCW\ Radial}$ Right - E-Frame: CCW Only, F-Frame: CCW Only, J-frame: CCW Axial, CW Radial 118 | © Danfoss | January 2022 ### DPC setting (2 digit code, 10 bar increments) | | | J Frame | | | | | |---------|-----------------------------------|---------|------|------|------|------| | | | S45B | S51B | S60B | S65C | S75C | | Example | 25 = 250 bar (3625 psi) | | • | | | | | 10-26 | 100 to 260 bar [1450 to 3771 psi] | • | | • | • | • | | 27-28 | 270 to 280 bar [3916 to 4061 psi] | | | • | | | | 29-31 | 290-310 bar [4206 to 4496 psi] | | | • | | | # E Load sensing setting (2 digit code, 1 bar increments) | Example | 20 = 20 bar (290 psi) | | | | | | |---------|---|---|---|---|---|---| | 10-40 | 10 to 40 bar [175 to 580 psi] | • | • | • | • | • | | NN | Not applicable (pressure compensated only controls) | • | • | • | • | • | ### F Not used | | | |
 | | |----|----------------|---|------|---| | NN | Not applicable | • | | • | ### G Servo Control Orifice | N | None (standard) | • | • | • | • | • | |---|-----------------|---|---|---|---|---| | E | 0.8 mm diameter | • | • | • | • | • | | F | 1.0 mm diameter | • | • | • | • | • | ### H Gain Orifice | 3 | 1.0 mm diameter (standard orifice) | • | • | • | • | • | |---|--|---|---|---|---|---| | С | 0.8 mm diameter LS signal line orifice for ETL use (with standard orifice) | • | • | • | • | • | Additional LS signal line orifice size options are available for necessary system tuning requirements. Contact your Danfoss representative for further information. # J Input Shaft | C2 | 13 tooth, 16/32 pitch | |----|--| | C3 | 15 tooth, 16/32 pitch | | S1 | 14 tooth 12/24 pitch | | S5 | 14 tooth, 12/24 pitch, with 5/16-18 UNC Thread | | K4 | 1.25 inch straight keyed | | ТО | 1.25 inch tapered | # Auxiliary Mount/Endcap Style | Auxiliary
Description | Endcap
Style | Inlet
Porting | Outlet
Porting | Endcap Description | Code | |--------------------------|-----------------|------------------|-------------------|--|------| | None
 Axial | O-Ring Boss | O-Ring Boss | Inlet - SAE O-Ring boss port (1.875 inch
threads)
Outlet - SAE O-Ring boss port (1.3125 inch
threads) | NH | | None | Axial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) | N9 | | None | Axial | Split Flange | Split Flange | Inlet- Code 61 Split Flange 4 Bolt (2 inch
port, M12 threads)
Outlet- code 61 Split Flange 4 Bolt (1 inch
port, M10 threads) | NQ | | None | Axial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads), w/ Disp. Limiter | NZ | | None | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) | NE | | None | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port M12 metric threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port M10 metric threads) | NX | | None | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads), w/ Disp. Limiter, Large servo bore | NV | | Running
Cover | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) | RE | | Running
Cover | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads), w/ Disp. Limiter | RF | | Running
Cover | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port M12 metric threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port M10 metric threads) | RX | | SAE-A, 11
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) | TE | | SAE-A, 11
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) with integral SAE "A" Aux. pad (0.375 inch threads) | TY | 120 | © Danfoss | January 2022 BC152886483703en-001201 # Auxiliary Mount/Endcap Style (continued) | Auxiliary
Description | Endcap
Style | Inlet
Porting | Outlet
Porting | Endcap Description | Code | |------------------------------------|-----------------|------------------|-------------------|--|------| | SAE-A, 11
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) | TF | | SAE-A, 11
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port M12 threads) Outlet - Code 62 Split Flange Port 4 Bolt (1 inch port M10 threads) with integral SAE "A" Aux. pad (0.375 inch threads) | TZ | | SAE-A, 9
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) | AE | | SAE-A, 9
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) with displacement limiter | AF | | SAE-A, 9
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) with integral SAE "A" Aux. pad (0.375 inch threads) | AY | | SAE-A, 9
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port M12 threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port M10 threads) | AX | | SAE-A 9T
Metric M10 | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port M12 threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port M10 threads) | AZ | | SAE-A 11T
Rotated 90
Degrees | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) with displacement limiter | GF | | SAE-B, 13
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) | BE | | SAE-B, 13
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads), w/ Disp. Limiter | BF | | SAE-B, 13
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port M12 threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port M10 threads) | BX | © Danfoss | January 2022 BC152886483703en-001201 | 121 # Auxiliary Mount/Endcap Style (continued) | Auxiliary
Description | Endcap
Style | Inlet
Porting | Outlet
Porting | Endcap Description | Code | |-------------------------------------|-----------------|------------------|-------------------|--|------| | SAE-B, 13
teeth | Radial | Split Flange | Split Flange | Inlet- Code 61 Split Flange 4 Bolt (2 inch
port, M12 threads)
Outlet- Code 61 Split Flange 4 Bolt (1 inch
port, M10 threads) | EX | | SAE-B, 13T
Rotated 90
Degrees | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) | JE | | SAE-BB, 15
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) | VE | | SAE-BB, 15
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads), w/ Disp. Limiter | VF | | SAE-BB, 15
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port M12 threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port M10 threads) | VX | | SAE-BB, 15T
Metric M12 | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port M12 threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port M10 threads) | VM | | SAE-BB, 15
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port M12 threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port M10 threads), Large servo bore | DX | | SAE-C, 14
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) | CE | | SAE-C, 14
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads), w/ Disp. Limiter | CF | | SAE-C, 14
teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port M12 threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port M10 threads) | СХ | # J Input Shaft/Auxiliary Mount/Endcap # Available Combinations | | J Frame | | | | | | | |-------------------|--------------------------|---|---|---|---|--|--| | | S45B S51B S60B S65C S75C | | | | | | | | C2AE ¹ | • | • | • | • | • | | | | C2AY ¹ | • | • | • | • | • | | | | C2AF ¹ | • | • | • | • | • | | | 122 | © Danfoss | January 2022 BC152886483703en-001201 | | J Frame | | | | | | |-------------------|---------|------|------|------|------|--| | | S45B | S51B | S60B | S65C | S75C | | | C2AX ¹ | | • | • | • | • | | | C2BE ¹ | • | • | • | • | • | | | C2BF ² | • | • | • | • | • | | | C2CE ¹ | • | • | • | • | • | | | C2N9 ¹ | | • | • | • | • | | | C2NE ¹ | • | • | • | • | • | | | C2NH ¹ | • | • | • | • | • | | | C2NV ² | • | • | • | • | • | | | C2NZ ¹ | • | • | • | • | • | | | C2RE ¹ | • | • | • | • | • | | | C2RF ² | • | • | • | • | • | | | C2TE ¹ | • | • | • | • | • | | | C2TF ² | • | • | • | • | • | | | C2TY ¹ | | | | • | | | | C2VE ¹ | | | | • | • | | | C3AE ¹ | • | • | • | • | • | | | C3AF ² | | • | • | • | | | | C3AY ¹ | • | • | • | • | • | | | C3BE ¹ | • | • | • | • | • | | | C3BF ² | | • | • | • | • | | | C3CE ¹ | • | • | • | • | • | | | C3DX ¹ | | | • | • | | | | C3GX ¹ | | | | | | | | C3N9 ¹ | • | • | • | • | • | | | C3N9 ¹ | • | • | • | • | • | | | C3NE ¹ | • | • | • | • | • | | | | • | • | • | • | • | | | C3NV ² | • | • | • | • | • | | | C3NX ¹ | • | • | • | • | • | | | C3NZ ¹ | • | • | • | • | • | | | C3RE ¹ | • | • | • | • | • | | | C3RF ² | • | • | • | • | • | | | C3TE ¹ | • | • | • | • | • | | | C3TF ¹ | • | • | • | • | • | | | C3TZ ¹ | • | • | • | • | • | | | C3VE ¹ | • | • | • | • | • | | | C3VF ¹ | • | • | • | • | • | | | C3VM ¹ | • | • | • | • | • | | | K4AE ¹ | • | • | • | • | • | | | K4AF ² | • | •
| • | • | • | | | K4AY ¹ | • | • | • | • | • | | | K4BE ¹ | • | • | • | • | • | | | K4BF ² | • | • | • | • | • | | | K4CE ¹ | • | • | • | • | • | | | K4CF ² | • | • | • | • | • | | | K4N9 ¹ | • | • | • | • | • | | | | J Frame | J Frame | | | | | | | |-------------------|---------|---------|------|------|------|--|--|--| | | S45B | S51B | S60B | S65C | S75C | | | | | K4NE ¹ | • | • | • | • | • | | | | | K4NH ¹ | • | • | • | • | • | | | | | K4NV ² | • | • | • | • | • | | | | | K4NZ ¹ | • | • | • | • | • | | | | | K4RE ¹ | • | • | • | • | • | | | | | S1AZ ¹ | • | • | • | • | • | | | | | S1JE ¹ | • | • | • | • | • | | | | | S5BE ¹ | • | • | • | • | • | | | | | S5RX ¹ | • | • | • | • | • | | | | ¹ NNN Displacement limiter options only ² FFF Displacement limiter options only | | J Frame | | | | | |-------------------|---------|------|------|------|------| | | S45B | S51B | S60B | S65C | S75C | | K4EX ¹ | • | • | • | • | | | K4JE ¹ | • | • | | • | | | K4RF ² | | | | • | | | K4TE ¹ | • | • | | • | | | K4VE ¹ | • | • | | • | | | S1AE ¹ | | • | | • | • | | S1AF ² | | • | | • | | | S1AY ¹ | | • | | • | | | S1BE ¹ | • | • | | • | | | S1BF ² | • | • | | • | | | S1CE ¹ | • | • | | • | | | S1CF ² | | • | | • | | | S1DX ¹ | • | • | | • | | | S1GF ² | • | • | | • | | | S1N9 ¹ | • | • | | • | | | S1NE ¹ | • | • | | • | | | S1NH ¹ | • | • | | • | | | S1NQ ¹ | • | • | • | • | • | | S1NV ² | • | • | • | • | • | | S1NX ¹ | • | • | • | • | • | | S1NZ ¹ | • | • | • | • | • | | S1RE ¹ | • | • | • | • | • | | S1RF ² | • | • | • | • | • | | S1TE ¹ | • | • | • | • | • | | S1TF ² | • | • | • | • | • | | S1VE ¹ | • | • | • | • | • | | S1VF ¹ | • | • | • | • | • | | T0AE ¹ | • | • | • | • | • | | T0BE ¹ | • | • | • | • | • | | T0BF ¹ | • | • | • | • | • | | T0CE ¹ | • | • | | • | | 124 | © Danfoss | January 2022 | | J Frame | | | | | | | |-------------------|---------|------|------|------|------|--|--| | | S45B | S51B | S60B | S65C | S75C | | | | T0N9 ¹ | • | • | • | • | • | | | | T0NE ¹ | • | • | • | • | • | | | | T0NH ¹ | • | • | • | • | • | | | | T0NV ² | • | • | • | • | • | | | | T0NZ ¹ | • | • | • | • | • | | | | TORE ¹ | • | • | • | • | • | | | | TOTE ¹ | • | • | • | • | • | | | | T0VE ¹ | • | • | • | • | • | | | | T0VF ² | • | • | • | • | • | | | ¹ NNN Displacement limiter options only ### K Shaft seal | | | J Frame | | | | | |---|----------------|---------|------|------|------|------| | | | S45B | S51B | S60B | S65C | S75C | | Α | Single (Viton) | • | • | • | • | • | # K Mounting flange and housing port style | 2 | SAE-C Flange 4-bolt/SAE O-ring boss port | • | • | • | • | • | |---|--|---|---|---|---|---| | 8 | SAE-B Flange 2-bolt/SAE O-ring boss ports | • | • | • | • | • | | 9 | SAE-C Flange 2-bolt/SAE O-ring boss ports | • | • | • | • | • | | F | F SAE-C Flange 2-bolt rotated 45° SAE
O-ring boss ports | • | • | • | • | • | # K Angle Sensor Housing | N | Not applicable | • | • | • | • | • | |---|--|---|---|---|---|---| | R | Angle Sensor Housing, Right Hand
Side | • | • | • | • | • | # L Displacement limiter | NNN | None | • | • | • | • | • | |-----|--------------------------------------|---|---|---|---|---| | FFF | Adjustable, factory set at max angle | • | • | • | • | • | # M Special hardware | ווו | None | • | • | • | • | • | |-----|-------------------------|---|---|---|---|---| | ANS | Angle Sensor Swashplate | • | • | • | • | • | # N Special features | NNN | None | • | • | • | • | • | |-----|------|---|---|---|---|---| ² FFF Displacement limiter options only Frame J #### **Performance J45B** Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS]. Frame J #### Performance J51B Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS]. Frame J #### **Performance J60B** Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS]. Frame J #### Performance J65C Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS]. Frame J #### **Performance J75C** Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS]. The chart above shows allowable inlet pressure and speed at various displacements. Greater speeds and lower inlet pressures are possible at reduced displacement. Operating outside of acceptable limits reduces pump life. 3000 3200 2000 2200 2400 2600 Shaft Speed min⁻¹(rpm) 2800 # **Hydraulic Controls** ### **Pressure Compensated Controls** # Response/Recovery Times* | (msec) | Response | Recovery | |--------|----------|----------| | J45B | 33 | 140 | | J51B | 33 | 150 | | J60B | 39 | 170 | | J65C | 45 | 140 | | J75C | 45 | 150 | # PC Setting range | Model | PC | ВС | |-------|--------------------------------|--------------------------------| | J45B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | J51B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | J60B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | J65C | 100-260 bar
[1450-3770 bar] | N/A | | J75C | 100-260 bar
[1450-3770 bar] | N/A | ### Schematic B = Outlet S = Inlet L1, L2 = Case drain M1* = System pressure gauge port * M1 port is available on axially ported endcaps only # **Remote Pressure Compensated Controls** # Response/Recovery Times* | (msec) | Response | Recovery | |--------|----------|----------| | J45B | 33 | 140 | | J51B | 33 | 150 | | J60B | 39 | 170 | | J65C | 45 | 140 | | J75C | 45 | 150 | # PC Setting Range | Model | RP | ВР | |-------|--------------------------------|--------------------------------| | J45B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | J51B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | J60B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | J65C | 100-260 bar
[1450-3770 bar] | N/A | | J75C | 100-260 bar
[1450-3770 bar] | N/A | # LS Setting range | Model | bar | psi | |-------|-------|---------| | All | 10-40 | 145-580 | # Schematic B = Outlet S = Inlet L1, L2 = Case drain X = Remote PC port M1* = System pressure gauge port * M1 port is available on axially ported endcaps only # **Load sensing/Pressure compensated Controls** # Response/Recovery Times* | (msec) | Response | Recovery | |--------|----------|----------| | J45B | 33 | 140 | | J51B | 33 | 150 | | J60B | 39 | 170 | | J65B | 45 | 140 | | J75B | 45 | 150 | # PC control setting range | Code | LS | BS | |-------|--------------------------------|--------------------------------| | J45B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | J51B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | J60B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | J65C, | 100-260 bar
[1450-3770 bar] | N/A | | J75C | 100-260 bar
[1450-3770 bar] | N/A | # LS setting range | Model | bar | psi | |-------|-------|---------| | All | 10-40 | 145–580 | #### Schematic B = Outlet S = Inlet L1, L2 = Case drain X = LS signal port M1* = System pressure gauge port * M1 port is available on axially ported endcaps only # Load sensing Control with Bleed Orifice/ Pressure Compensated # Response/Recovery Times* | (msec) | Response | Recovery | |--------|----------|----------| | J45B | 33 | 140 | | J51B | 33 | 150 | | J60B | 39 | 170 | | J65B | 45 | 140 | | J75B | 45 | 150 | # PC control setting range | Code | LB | ВВ | |-------|--------------------------------|--------------------------------| | J45B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | J51B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | J60B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | J65C, | 100-260 bar
[1450-3770 bar] | N/A | | J75C | 100-260 bar
[1450-3770 bar] | N/A | # LS setting range | Model | bar | psi | |-------|-------|---------| | All | 10-40 | 145–580 | ### Schematic B = Outlet S = Inlet L1, L2 = Case drain X = LS signal port M1* = System pressure gauge port * M1 port is available on axially ported endcaps only ### **Electric Controls** #### **Connectors** | Description | Quantity Ordering Numl | | |--------------------------------|------------------------|-------------------------| | Mating Connector | 1 Deutsch® DT06-2S | | | Wedge Lock | 1 | Deutsch® W25 | | Socket Contact (16 and 18 AWG) | 2 | Deutsch® 0462-201-16141 | | Danfoss mating connector kit | 1 | K29657 | ### **Continuous Duty Operating Range** Continuous duty operating range # **Solenoid Data - Normally Closed** | Voltage | 12V | 24V | |---|---------|---------| | Threshold Control [mA] (310/260 bar PC setting, oil temp X) | 200/400 | 100/200 | | End Current [mA] (20 bar LS setting, oil temp X) | 1200 | 600 | # **Solenoid Data - Normally Open** | Voltage | 12V | 24V | |--|-----------|---------| | Threshold Control [mA] (20 bar LS setting, oil temp X) | 0 | 0 | | End Current [mA] (260/310 bar PC setting, oil temp X) | 1000/1100 | 500/550 | ### Hysteresis | Frame | Hysteresis | | |------------------|---|--| | J45B, J51B, J60B | Input hysteresis <4% (control current): Output hysteresis <4.5% (system pressure) | | | J65C, J75C | Input hysteresis <4% (control current): Output hysteresis <4.5% (system pressure) | | ### Fan Drive Control Solenoid Data - Normally Closed | Voltage | 12V | 24V | |------------------------------|------|-----| | Maximum Control Current [mA] | 1800 | 920 | # Normally Closed Electric On/Off with Pressure Compensation Controls Response/Recovery times (without servo control orifice) | (msec) | Response | Recovery | |--------|----------|----------| | J45B | 33 | 140 | | J51B | 33 | 150 | | J60B | 39 | 170 | | J65C | 45 | 140 | | J75C | 45 | 150 | For fan-drive systems, and systems with
motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. #### Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port X = Load Sense Port ### LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 10 - 40 | [145 - 580] | 136 | © Danfoss | January 2022 ### PC setting range | Frame | AG, AR (12V) | BE, BR (12V) | AY, CR (24V) | BG, DR (24V) | |-------|-----------------|-----------------|-----------------|-----------------| | J45B | 100-280 bar | 290-310 bar | 100-280 bar | 290-310 bar | | J51B | [1450-4060] psi | [4205-4495] psi | [1450-4060] psi | [4205-4495] psi | | J60B | | | | | | J65C | 100-260 bar | Not Available | 100-260 bar | Not Available | | J75C | [1450-3770] psi | | [1450-3770] psi | | # Normally Open Electric On/Off with Pressure Compensation Controls ### Response/Recovery times* | (msec) | Response | Recovery | |--------|----------|----------| | J45B | 33 | 140 | | J51B | 33 | 150 | | J60B | 39 | 170 | | J65C | 45 | 140 | | J75C | 45 | 150 | ### * Without servo control orifice For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. # Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port X = Load Sense Port # LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 10 - 40 | [145 - 580] | # PC setting range | Frame | AF, AN (12V) | BF, BN (12V) | AT, CN (24V) | DF, DN (24V) | |-------|-----------------|-----------------|-----------------|-----------------| | J45B | 100-280 bar | 290-310 bar | 100-280 bar | 290-310 bar | | J51B | [1450-4060] psi | [4205-4495] psi | [1450-4060] psi | [4205-4495] psi | | J60B | | | | | | J65C | 100-260 bar | Not Available | 100-260 bar | Not Available | | J75C | [1450-3770] psi | | [1450-3770] psi | | # Normally Closed Electric Proportional with Pressure Compensation Controls # Response/Recovery times | | 0.8mm Orifice | | 1.0mm Orifice | | |--------|---------------|----------|---------------|----------| | (msec) | Response | Recovery | Response | Recovery | | J45B | 33 | 425 | 33 | 325 | | J51B | 33 | 455 | 33 | 325 | | J60B | 39 | 515 | 39 | 395 | | J65C | 45 | 425 | 45 | 325 | | J75C | 45 | 455 | 45 | 350 | # LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 10 - 40 | [145 - 580] | ### Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port X = Load Sense Port ### PC setting range | Frame | AH, AV (12V) | BH, BM (12V) | AK, AL (24V) | BK, BL (24V) | |-------|-----------------|-----------------|-----------------|-----------------| | J45B | 100-280 bar | 290-310 bar | 100-280 bar | 290-310 bar | | J51B | [1450-4060] psi | [4205-4495] psi | [1450-4060] psi | [4205-4495] psi | | J60B | | | | | | J65C | 100-260 bar | Not Available | 100-260 bar | Not Available | | J75C | [1450-3770] psi | | [1450-3770] psi | | For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. Electric proportional controls have a unique relationship between margin (LS) setting and low pressure standby. See the graph below for this relationship. Frames E, F, J Electric Proportional Control Low Pressure Standby ### **Normally Open Electric Proportional with Pressure Compensation Controls** ### Response/Recovery times | | 0.8mm Orifice | | 1.0mm Orifice | | |--------|---------------|----------|---------------|----------| | (msec) | Response | Recovery | Response | Recovery | | J45B | 33 | 425 | 33 | 325 | | J51B | 33 | 455 | 33 | 325 | | J60B | 39 | 515 | 39 | 395 | | J65C | 45 | 425 | 45 | 325 | | J75C | 45 | 455 | 45 | 350 | ### LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 10 - 40 | [145 - 580] | ### Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port X = Load Sense Port ### PC setting range | Frame | AW, AX (12V) | BW, BX (12V) | CK, CL (24V) | DK, DL (24V) | |-------|-----------------|-----------------|-----------------|-----------------| | J45B | 100-280 bar | 290-310 bar | 100-280 bar | 290-310 bar | | J51B | [1450-4060] psi | [4205-4495] psi | [1450-4060] psi | [4205-4495] psi | | J60B | | | | | | J65C | 100-260 bar | Not Available | 100-260 bar | Not Available | | J75C | [1450-3770] psi | | [1450-3770] psi | | For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. Electric proportional controls have a unique relationship between margin (LS) setting and low pressure standby. See the graph below for this relationship. Frames E, F, J Electric Proportional Control Low Pressure Standby # Normally Closed Electric Torque Limiting Control with Pressure Compensation Controls # Response/Recovery Times* | (msec) | Response | Recovery | |--------|----------|----------| | J45B | 33 | 140 | | J51B | 33 | 150 | | J60B | 39 | 170 | | J65C | 45 | 140 | | J75C | 45 | 150 | ### Pin location P200 151 #### Pinout | Pin | Description | |-----|-----------------------------------| | 1 | Supply - | | 2 | Ouput signal 2 - Secondary Signal | | 3 | Output signal 1 - Primary Signal | | 4 | Supply + | # PC setting range | Frame | TA, TE (12V) | TC, TG (12V) | TB, TF (24V) | TD, TH (24V) | |-------|-----------------|-----------------|-----------------|-----------------| | J45B | 100-280 bar | 290-310 bar | 100-280 bar | 290-310 bar | | J51B | [1450-4060] psi | [4205-4495] psi | [1450-4060] psi | [4205-4495] psi | | J60B | | | | | | J65C | 100-260 bar | Not Available | 100-260 bar | Not Available | | J75C | [1450-3770] psi | | [1450-3770] psi | | ### LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 10 - 40 | [145 - 580] | For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. # J-frame pump with integrated ETL control # **Normally Closed Fan Drive Control** # PC setting range | Frame | SA , SE (12V) | SC, SG (12V) | SB, SF (24V) | SD, SH (24V) | |-------|-------------------------|-------------------------|-------------------------|-------------------------| | J45B | 100-210 bar [1450-3045] | 220-310 bar [3190-4495] | 100-210 bar [1450-3045] | 220-310 bar [3190-4495] | | J51B | psi | psi | psi | psi | | J60B | | | | | | J65C | 100-210 bar [1450-3045] | 220-260 bar [3190-3771] | 100-210 bar [1450-3045] | 220-260 bar [3190-3771] | | J75C | psi | psii | psi | psii | ### Fan Drive Control Schematic 142 | © Danfoss | January 2022 BC152886483703en-001201 # Input shafts 1. See Input shaft torque ratings for an explanation of maximum torque. 1. See *Input shaft torque ratings* for an explanation of maximum torque. 144 | © Danfoss | January 2022 BC152886483703en-001201 1. See *Input shaft torque ratings* for an explanation of maximum torque. # **Installation drawings** ### **Axial Ported Endcap** Frame J # **Axial Ported Endcap Installation Dimensions** # **Right Fan Drive Control** # **Radial Ported Endcap Split Flange Ports** 148 | © Danfoss | January 2022 # **Radial Ported Endcap Rear View** # Radial ported endcap rear view * Interference with internal components will occur if fitting depth in port X is greater than 11.8 mm [0.465 in] # **Radial Ported Endcap Installation Dimensions** 150 | © Danfoss | January 2022 BC152886483703en-001201 # **Right Angle Sensor Position Installation Dimensions** # **Front Mounting Flange** SAE-C 4 Bolt P108 440E 152 | © Danfoss | January 2022 # **Auxiliary mounting pads** ### SAE-A auxiliary mounting pad (integrated) ### Dimensions ### **Specifications** | Coupling | 9-tooth | 11-tooth | |---------------------------|----------------------|-----------------------| | Spline minimum engagement | 13.5 mm [0.53 in] | 15 mm [0.59 in] | | Maximum torque | 107 N•m [950 lbf•in] | 147 N•m [1300 lbf•in] | © Danfoss | January 2022 # SAE-A auxiliary mounting pad (non-integral) ### **Dimensions** ### Specifications | Coupling | 9-tooth | 11-tooth | |---------------------------|----------------------|-----------------------| | Spline minimum engagement | 13.5 mm [0.53 in] | 15 mm [0.59 in] | | Maximum torque | 107 N•m [950 lbf•in] | 147 N•m [1300 lbf•in] | 154 | © Danfoss | January 2022 BC152886483703en-001201 ### SAE-B auxiliary mounting pad #### **Dimensions** # Specifications | Coupling | 13-tooth | 15-tooth | |---------------------------|-----------------------|-----------------------| | Spline minimum engagement | 14.2 mm [0.56 in] | 18.9 mm [0.74 in] | | Maximum torque | 249 N·m [2200 lbf•in] | 339 N·m [3000 lbf·in] | # SAE-C auxiliary mounting pad ### Dimensions © Danfoss | January 2022 BC152886483703en-001201 | 155 # Specifications | Coupling | 14-tooth | |---------------------------|-----------------------| | Spline minimum engagement | 18.3 mm [0.72 in] | | Maximum torque | 339 N·m [3000 lbf·in] | # Running cover # **Radial Endcap Clockwise** Radial endcap counterclockwise # **Radial Endcap Counterclockwise** # **Axial Endcap Clockwise** Axial endcap clockwise # **Axial Endcap Counterclockwise** Axial endcap counterclockwise # **Displacement limiter** J Frame open circuit pumps are
available with an optional adjustable displacement limiter. This adjustable stop limits the pump's maximum displacement. # Setting range | J45B | 8.4 to 45 cm ³ [0.51 to 2.75 in ³] | |------|--| | J51B | 13.7 to 51 cm ³ [0.84 to 3.11 in ³] | | J60B | 16.8 to 60 cm ³ [1.03 to 3.66 in ³] | | J65B | 25.4 to 65 cm ³ [1.55 to 3.97 in ³] | | J75B | 28.4 to 75 cm ³ [1.73 to 4.58 in ³] | ### Displacement per turn | J45B | 6.2 cm³/rev [0.38 in³/rev] | |------|----------------------------| | J51B | 6.2 cm³/rev [0.38 in³/rev] | | J60B | 6.2 cm³/rev [0.38 in³/rev] | | J65B | 7.2 cm³/rev [0.44 in³/rev] | | J75B | 7.2 cm³/rev [0.44 in³/rev] | # Displacement limiter cross-section ### Displacement limiters are only available for endcap options V and W. Third-angle projection mm [in] 158 | © Danfoss | January 2022 BC152886483703en-001201 ### Design Series 45 Frame F pumps have a single servo piston design with a cradle-type swashplate set in polymer-coated journal bearings. A bias spring and internal forces increase swashplate angle. The servo piston decreases swashplate angle. Nine reciprocating pistons displace fluid from the pump inlet to the pump outlet as the cylinder block rotates on the pump input shaft. The block spring holds the piston slippers to the swashplate via the slipper retainer. The cylinder block rides on a bi-metal valve plate optimized for high volumetric efficiency and low noise. Tapered roller bearings support the input shaft and a viton lipseal protects against shaft leaks. An adjustable one spool (PC only, not shown) or two spool (LS and PC) control senses system pressure and load pressure (LS controls). The control ports system pressure to the servo piston to control pump output flow. Frame F cross section # **Technical Specifications** | Feature | | Unit | F Frame | | | |--|-----------------------------|---------------------------|------------------|------------------|--| | | | | 074B | 090C | | | Maximum Displaceme | nt | cm³ [in³] | 74 [4.52] | 90 [5.49] | | | Working Input Speed | Minimum | min -1 (rpm) | 500 | 500 | | | | Continuous | | 2400 | 2200 | | | | Maximum | | 2800 | 2600 | | | Working Pressure | Continuous | bar [psi] | 310 [4500] | 260 [3770] | | | | Maximum | | 400 [5800] | 350 [5075] | | | Flow at rated speed (th | neoretical) | l/min [US gal/min] | 178 [46.9] | 198 [52.3] | | | Input torque at maxim
(theoretical) at 49° C [1 | | N•m/bar [lbf•in/1000 psi] | 1.178 [719.3] | 1.433 [874.8] | | | Mass moment of inertia of internal rotating components | | kg•m² [slug•ft²] | 0.0063 [0.00465] | 0.0065 [0.00479] | | | Weight | Axial ports | kg [lb] | 29.5 [65.0] | | | | | Radial ports | | 32.6 [71.9] | | | | External Shaft Loads | External moment (Me) | N•m [lbf•in] | 300 [2655] | 300 [2655] | | | | Thrust in (Tin), out (Tout) | N [lbf] | 2900 [652] | 2900 [652] | | | 4-Bolt SAE-C
mounting flange load | Vibratory
(continuous) | N•m [lbf•in] | 3730 [33 100] | | | | moments | Shock (maximum) | | 13220 [117 100] | | | | 2-Bolt SAE-B
mounting flange load | Vibratory
(continuous) | | 1700 [15000] | | | | moments | Shock (maximum) | | 5900 [52000] | | | ### Order code # Code description | Code | Description | |------|--| | R | Product Frame, Variable Open Circuit Pump | | S | Rotation | | Р | Displacement | | С | Control Type | | D | Pressure Compensator Setting | | E | Load Sense Setting | | F | Not Used | | G | Choke Orifice | | Н | Gain Orifice | | J | Input Shaft/Auxiliary Mount/Endcap | | К | Shaft Seal/Front Mounting Flange/Housing Ports | | L | Displacement Limiter | | М | Special Hardware | | N | Special Features | 160 | © Danfoss | January 2022 BC152886483703en-001201 # R Product | | F
 0 | | | |----|--|---|------| | | | | 090C | | FR | F Frame, variable displacement open circuit pump | • | • | # S Rotation | L | Left Hand (counterclockwise) | • | • | |---|------------------------------|---|---| | R | Right Hand (clockwise) | • | • | # R Displacement | 074B | 074 cm3/rev [4.52 in3/rev] | • | | |------|----------------------------|---|---| | 090C | 090 cm3/rev [5.49 in3/rev] | | • | # C Control type | | | 074B | 090C | |-----|---|------|------| | PC | Pressure Compensator | • | • | | BC* | Pressure Compensator [>280 bar] | | | | RP | Remote Pressure Compensator | • | • | | BP* | Remote Pressure Compensator [>280 bar] | • | | | LS | Load Sensing/Pressure Comp. | • | • | | BS* | Load Sensing/Pressure Comp. [>280 bar] | • | | | LB | Load Sensing/Pressure Comp. with internal bleed orifice | • | • | | BB* | Load Sensing/Pressure Comp. with internal bleed orifice [>280 bar] | • | | | AN | Electric On/Off w/Pressure Comp. (NO, 12VDC) Left | • | • | | CN | Electric On/Off w/Pressure Comp. (NO, 24VDC) Left | • | • | | AR | Electric On/Off w/Pressure Comp. (NC, 12VDC) Left | • | • | | CR | Electric On/Off w/Pressure Comp. (NC, 24VDC) Left | • | • | | AF | Electric On/Off w/Pressure Comp. (NO, 12VDC) Right | • | • | | AT | Electric On/Off w/Pressure Comp. (NO, 24VDC) Right | • | • | | AG | Electric On/Off w/Pressure Comp. (NC, 12VDC) Right | • | • | | AY | Electric On/Off w/Pressure Comp. (NC, 24VDC) Right | | • | | BN* | Electric On/Off w/Pressure Comp. (NO, 12VDC) [>280 bar] Left | • | | | DN* | Electric On/Off w/Pressure Comp. (NO, 24VDC) [>280 bar] Left | • | | | BR* | Electric On/Off w/Pressure Comp. (NC, 12VDC) [>280 bar] Left | | | | DR* | Electric On/Off w/Pressure Comp. (NC, 24VDC) [>280 bar] Left | • | | | BF* | Electric On/Off w/Pressure Comp. (NO, 12VDC) [>280 bar] Right | • | | | DF* | Electric On/Off w/Pressure Comp. (NO, 24VDC) [>280 bar] Right | | | | BE* | Electric On/Off w/Pressure Comp. (NC, 12VDC) [>280 bar] Right | • | | | BG* | Electric On/Off w/Pressure Comp. (NC, 24VDC) [>280 bar] Right | • | | | AX | Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) Left | • | • | | CL | Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) Left | | • | | AH | Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) Left | • | • | | AL | Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) Left | • | • | # C Control type (continued) | | | 074B | 090C | |-----|---|------|------| | AW | Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) Right | | • | | СК | Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) Right | • | • | | AV | Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) Right | • | • | | AK | Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) Right | • | | | BX* | Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) [>280 bar] Left | • | | | DL* | Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) [>280 bar] Left | • | | | BH* | Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) [>280 bar] Left | | | | BL* | Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) [>280 bar] Left | | | | BW* | Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) [>280 bar] Right | | | | DK* | Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) [>280 bar] Right | • | | | BM* | Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) [>280 bar] Right | | | | BK* | Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) [>280 bar] Right | | | | FA* | Electric On/Off Dump valve w/Pressure Comp. + Load Sense (NC, 12VDC) Right | | | | FB* | Electric On/Off Dump valve w/Pressure Comp. + Load Sense (NC, 12VDC) Left | • | | | FK | Load Sensing/Pressure Comp. (NC, 24VDC) Right | • | | | FL | Load Sensing/Pressure Comp. (NC, 24VDC) Left | • | | | FM | | • | • | | TA | Electric Torque Limiting w/Pressure Comp. (NC,12VDC) Left | • | • | | ТВ | Electric Torque Limiting w/Pressure Comp. (NC,24VDC) Left | • | • | | TC | Electric Torque Limiting w/Pressure Comp. (NC,12VDC) Left | • | • | | TD | Electric Torque Limiting w/Pressure Comp. (NC,24VDC) Left | • | • | | TE | Electric Torque Limiting w/Pressure Comp. (NC,12VDC) Right | • | • | | TF | Electric Torque Limiting w/Pressure Comp. (NC,24VDC) Right | • | • | | TG | Electric Torque Limiting w/Pressure Comp. (NC,12VDC) Right | • | • | | TH | Electric Torque Limiting w/Pressure Comp. (NC,24VDC) Right | • | • | | SA | Pressure Comp (12 Vdc), 100-210 Bar - Left | • | • | | SB | Pressure Comp (24 Vdc), 100-210 Bar - Left | • | • | | SC | Pressure Comp (12 Vdc), 220-310 Bar - Left | • | • | | SD | Pressure Comp (24 Vdc), 220-310 Bar - Left | • | • | | SE | Pressure Comp (12 Vdc), 100-210 Bar - Right | • | • | | SF | Pressure Comp (24 Vdc), 100-210 Bar - Right | • | • | | SG | Pressure Comp (12 Vdc), 220-310 Bar - Right | • | • | | SH | Pressure Comp (24 Vdc), 220-310 Bar - Right | • | • | Left - E-Frame: CW Only, F-Frame: CW Only, J-frame: CW Axial, CCW Radial Right - E-Frame: CCW Only, F-Frame: CCW Only, J-frame: CCW Axial, CW Radial # DPC setting (2 digit code, 10 bar increments) | F | | F Frame | • | |---------|---|---------|------| | | | 074B | 090C | | Example | 25 = 250 bar (3625 psi) | | | | 10–26 | 10–26 100 to 260 bar [1450 to 3771 psi] | | • | 162 | © Danfoss | January 2022 ^{*} Not available on 90cc pumps ### DPC setting (2 digit code, 10 bar increments) (continued) | | | | ! | |-------|-----------------------------------|-----------|---| | | | 074B 090C | | | 27-28 | 270 to 280 bar [3916 to 4061 psi] | • | | | 29-31 | 290-310 bar [4206 to 4496 psi] | • | | # E Load sensing setting (2 digit code, 1 bar increments) | Example | 20 = 20 bar (290 psi) | | | |---------|---|---|---| |
10-40 | 10 to 34 bar [145 to 508 psi] | • | • | | NN | Not applicable (pressure compensated only controls) | • | • | ### F Not used | NN | Not applicable | • | • | 1 | |----|----------------|---|---|---| |----|----------------|---|---|---| # G Servo Control Orifice | N | None (standard) | • | • | |---|-----------------|---|---| | Е | 0.8 mm diameter | • | • | | F | 1.0 mm diameter | • | • | ### H Gain Orifice | 3 | 1.0 mm diameter (standard orifice) | • | • | |---|--|---|---| | С | 0.8 mm diameter LS signal line orifice for ETL use (with standard orifice) | • | • | Additional LS signal line orifice size options are available for necessary system tuning requirements. Contact your Danfoss representative for further information. # J Input Shaft | S1 | 14 tooth 12/24 pitch | |----|--------------------------| | S2 | 17 tooth, 12/24 pitch | | K4 | 1.25 inch straight keyed | # Auxiliary Mount/Endcap Style | Auxiliary
Description | Endcap Style | Inlet Porting | Outlet Porting | Endcap Description | Code | |--------------------------|--------------|---------------|----------------|--|------| | None | Axial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) | N4 | | None | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) | N2 | | Running Cover | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) | R2 | | SAE-A, 9 teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) | A2 | | SAE-A, 11 teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) | T2 | | SAE-B, 13 teeth | Radial | Split Flange | Split Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) | B2 | © Danfoss | January 2022 # Auxiliary Mount/Endcap Style (continued) | SAE-BB, 15 teeth | Radial | Split Flange | | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) | V2 | |------------------|--------|--------------|-----|--|----| | SAE-C, 14 teeth | Radial | Split Flange | , , | Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) | C2 | # J Input Shaft/Auxiliary Mount/Endcap Available Combinations | | F Fram | e | |------|--------|------| | | 074B | 090C | | K4A2 | • | • | | K4B2 | • | • | | K4C2 | • | • | | K4N2 | • | • | | K4N4 | • | • | | K4R2 | • | • | | K4T2 | • | • | | K4V2 | • | • | | S1A2 | • | • | | S1B2 | • | • | | S1C2 | • | • | | S1N2 | • | • | | S1NB | • | • | | S1N4 | • | • | | S1R2 | • | • | | S1T2 | • | • | | S1V2 | • | • | | | F Fram | e | |------|--------|------| | | 074B | 090C | | S2A2 | • | • | | S2B2 | • | | | S2C2 | • | • | | S2N2 | • | • | | S2N4 | • | • | | S2R2 | • | • | | S2T2 | • | • | | S2V2 | • | | ### K Shaft seal | | | 074B | 090C | |---|----------------|------|------| | Α | Single (Viton) | • | • | 164 | © Danfoss | January 2022 # K Mounting flange and housing port style | 1 | SAE-C Flange 4-bolt/SAE O-ring boss ports (available with or without angle sensor) | • | • | |---|--|---|---| | 3 | SAE-B Flange 2-bolt/SAE O-ring boss ports (not available with angle sensor) | • | • | | G | SAE-C Flange 4-bolt/Metric O-ring boss ports (not available with angle sensor) | • | • | # K Angle Sensor Housing | N | Without angle sensor | • | • | |---|---------------------------------------|---|---| | R | Angle Sensor Housing, Right Hand Side | • | • | | * When viewing pump from input shaft, control oriented on top | | | | # L Displacement limiter | NNN | None (plugged) | • | • | |-----|--------------------------------------|---|---| | AAA | Adjustable, factory set at max angle | | • | # M Special hardware | NNN | None | • | • | |-----|-----------------------|---|---| | ANS | Angle sensor hardware | • | • | # N Special features | NNN | None | • | • | | |-----|------|---|---|--| |-----|------|---|---|--| ### **Performance F74B** Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS]. The chart above shows allowable inlet pressure and speed at various displacements. Greater speeds and lower inlet pressures are possible at reduced displacement. Operating outside of acceptable limits reduces pump life. Frame F ### **Performance F90C** Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS]. The chart above shows allowable inlet pressure and speed at various displacements. Greater speeds and lower inlet pressures are possible at reduced displacement. Operating outside of acceptable limits reduces pump life. # **Hydraulic Controls** ### **Pressure Compensated Controls** # Response/recovery times | (msec) | Response | Recovery | |--------|----------|----------| | F74B | 35 | 120 | | F90C | 35 | 135 | # PC setting range | Model | PC | ВС | |-------|--------------------------------|--------------------------------| | F74B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | F90C | 100-260 bar
[1450-3770 psi] | N/A | ### Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port M4 = Servo pressure gauge port # **Remote Pressure Compensated Controls** # Response/recovery times | (msec) | Response | Recovery | |--------|----------|----------| | F74B | 35 | 120 | | F90C | 35 | 135 | # PC setting range | Model | RP | ВР | |-------|--------------------------------|--------------------------------| | F74B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | F90C | 100-260 bar
[1450-3770 psi] | N/A | 168 | © Danfoss | January 2022 # An LS Setting of 20 is required for this control ### Remote PC schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port M4 = Servo pressure gauge port X = Remote PC port # **Load Sensing/Pressure Compensated Controls** # Response/recovery times* | (msec) | Response | Recovery | |--------|----------|----------| | F74B | 35 | 135 | | F90C | 45 | 135 | ### PC setting range | Model | bar | psi | |-------|--------------------------------|--------------------------------| | F74B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | F90C | 100-260 bar
[1450-3770 psi] | N/A | # LS setting range | Model | bar | psi | |-------|-------|---------| | All | 10–30 | 145–435 | # Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port M4 = Servo pressure gauge port X = LS signal port # **Load Sensing Control with Bleed Orifice/Pressure Compensated** # Response/recovery times* | (msec) | Response | Recovery | |--------|----------|----------| | E100B | 45 | 200 | | E130B | 50 | 200 | | E147C | 60 | 200 | # PC setting range | Model | LB | ВВ | |-------|--------------------------------|--------------------------------| | E100B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | E130B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | E147C | 100-260 bar
[1450-3770 psi] | N/A | # LS setting range | Model | bar | psi | |-------|-------|---------| | All | 10–34 | 145–435 | 170 | © Danfoss | January 2022 # Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port M4 = Servo pressure gauge port X = LS signal port ## **Electric Controls** # Connectors | Description | Quantity | Ordering Number | |--------------------------------|----------|-------------------------| | Mating Connector | 1 | Deutsch® DT06-2S | | Wedge Lock | 1 | Deutsch® W25 | | Socket Contact (16 and 18 AWG) | 2 | Deutsch® 0462-201-16141 | | Danfoss mating connector kit | 1 | K29657 | # **Continuous Duty Operating Range** ## **Solenoid Data - Normally Closed** | Voltage | 12V | 24V | |---|---------|---------| | Threshold Control [mA] (310/260 bar PC setting, oil temp X) | 200/400 | 100/200 | | End Current [mA] (20 bar LS setting, oil temp X) | 1200 | 600 | ## **Solenoid Data - Normally Open** | Voltage | 12V | 24V | |--|-----------|---------| | Threshold Control [mA] (20 bar LS setting, oil temp X) | 0 | 0 | | End Current [mA] (260/310 bar PC setting, oil temp X) | 1000/1100 | 500/550 | ## Hysteresis | Frame | Hysteresis | | |-------|---|--| | F74B | Input hysteresis <4% (control current): Output hysteresis <4.5% (system pressure) | | | F90C | Input hysteresis <4% (control current): Output hysteresis <4.5% (system pressure) | | # Fan Drive Control Solenoid Data - Normally Closed | Voltage | 12V | 24V | |------------------------------|------|-----| | Maximum Control Current [mA] | 1800 | 920 | # Normally Closed Electric On/Off with Pressure Compensation Controls # Response/Recovery times* | (msec) | Response
 Recovery | |--------|----------|----------| | F74B | 35 | 120 | | F90C | 35 | 135 | ^{*} Without servo control orifice 172 | © Danfoss | January 2022 BC152886483703en-001201 #### LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 10 - 40 | [145 - 580] | For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. #### Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port X = Load Sense Port ### PC setting range | Frame | AG, AR (12V) | BE, BR (12V) | AY, CR (24V) | BG, DR (24V) | |-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------| | F74B | 100-280 bar [1450-4060] psi | 290-310 bar [4205-4495] psi | 100-280 bar [1450-4060] psi | 290-310 bar [4205-4495] psi | | F90C | 100-260 bar [1450-3770] psi | Not Available | 100-260 bar [1450-3770] psi | Not Available | #### Normally Open Electric On/Off with Pressure Compensation Controls # Response/Recovery times* | (msec) | Response | Recovery | |--------|----------|----------| | F74B | 35 | 120 | | F90C | 35 | 135 | ^{*} Without servo control orifice ## LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 12 - 40 | [174 - 580] | For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. # Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port X = Load Sense Port # PC setting range | Frame | AF, AN (12V) | BF, BN (12V) | AT, CN (24V) | DF, DN (24V) | |-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------| | F74B | 100-280 bar [1450-4060] psi | 290-310 bar [4205-4495] psi | 100-280 bar [1450-4060] psi | 290-310 bar [4205-4495] psi | | F90C | 100-260 bar [1450-3770] psi | Not Available | 100-260 bar [1450-3770] psi | Not Available | # Normally Closed Electric Proportional with Pressure Compensation Controls # Response/Recovery times | | 0.8mm Orifice | | 1.0mm Orifice | | |--------|---------------|----------|---------------|----------| | (msec) | Response | Recovery | Response | Recovery | | F74B | 35 | 365 | 35 | 280 | | F90C | 35 | 410 | 35 | 315 | # LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 10 - 40 | [145 - 580] | # Schematic 174 | © Danfoss | January 2022 B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port X = Load Sense Port #### PC setting range | Frame | AH, AV (12V) | BH, BM (12V) | AK, AL (24V) | BK, BL (24V) | |-------|--------------------------------|--------------------------------|--------------------------------|--------------------------------| | F74B | 100-280 bar
[1450-4060] psi | 290-310 bar
[4205-4495] psi | 100-280 bar
[1450-4060] psi | 290-310 bar
[4205-4495] psi | | F90C | 100-260 bar
[1450-3770] psi | Not Available | 100-260 bar
[1450-3770] psi | Not Available | For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. Electric proportional controls have a unique relationship between margin (LS) setting and low pressure standby. See the graph below for this relationship. Frames E, F, J Electric Proportional Control Low Pressure Standby ## Normally Open Electric Proportional with Pressure Compensation Controls #### Response/Recovery times | | 0.8mm Orifice | | 1.0mm Orifice | | |--------|---------------|----------|---------------|----------| | (msec) | Response | Recovery | Response | Recovery | | F74B | 35 | 365 | 35 | 280 | | F90C | 35 | 410 | 35 | 315 | ## LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 10 - 40 | [145 - 580] | #### Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port X = Load Sense Port ## PC setting range | Frame | AW, AX (12V) | BW, BX (12V) | CK, CL (24V) | DK, DL (24V) | |-------|--------------------------------|--------------------------------|--------------------------------|--------------------------------| | F74B | 100-280 bar
[1450-4060] psi | 290-310 bar
[4205-4495] psi | 100-280 bar
[1450-4060] psi | 290-310 bar
[4205-4495] psi | | F90C | 100-260 bar
[1450-3770] psi | Not Available | 100-260 bar
[1450-3770] psi | Not Available | For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. Electric proportional controls have a unique relationship between margin (LS) setting and low pressure standby. See the graph below for this relationship. Frames E, F, J Electric Proportional Control Low Pressure Standby # Normally Closed Electric Torque Limiting Control with Pressure Compensation Controls # Response/recovery times | (msec) | Response | Recovery | |--------|----------|----------| | F74B | 35 | 120 | | F90C | 35 | 135 | ## Pin location P200 151 # Pinout | Pin | Description | |-----|-----------------------------------| | 1 | Supply - | | 2 | Ouput signal 2 - Secondary Signal | | 3 | Output signal 1 - Primary Signal | | 4 | Supply + | # PC setting range | Frame | TA, TE (12V) | TC, TG (12V) | TB, TF (24V) | TD, TH (24V) | |-------|--------------------------------|--------------------------------|--------------------------------|--------------------------------| | F74B | 100-280 bar
[1450-4060] psi | 290-310 bar
[4205-4495] psi | 100-280 bar
[1450-4060] psi | 290-310 bar
[4205-4495] psi | | F90C | 100-260 bar
[1450-3770] ps | Not Available | 100-260 bar
[1450-3770] ps | Not Available | # LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 10 - 40 | [145 - 580] | For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. BC152886483703en-001201 ## Frame F # F-frame pump with integrated ETL control # **Normally Closed Fan Drive Control** # PC setting range | Frame | SA , SE (12V) | SC, SG (12V) | SB, SF (24V) | SD, SH (24V) | |-------|-------------------------|-------------------------|-------------------------|-------------------------| | F074B | 100-210 bar [1450-3045] | 220-310 bar [3190-4495] | 100-210 bar [1450-3045] | 220-310 bar [3190-4495] | | | psi | psi | psi | psi | | F090C | 100-210 bar [1450-3045] | 220-260 bar [3190-3771] | 100-210 bar [1450-3045] | 220-260 bar [3190-3771] | | | psi | psii | psi | psii | # Fan Drive Control Schematic 178 | © Danfoss | January 2022 # Input shafts ## Shaft data | Code | Description | Maximum torque rating ¹ N•m [lbf•in] | Drawing | |------|--|---|--| | K4 | Ø 31.75 mm [1.25 in]
Straight keyed | 734 [6495] | MOUNTING FLANGE 7.938 +0.0 9.005 [0.3125+0.0 9.0020] SQ. KEY X 28.58 LG [1.125 ±0.010] 35.19 ± 0.13 [1.385 ±0.005] [1.385 ±0.005] 48 ± 0.6 [1.89 ± 0.024] COUPLING MUST NOT PROTRUDE BEYOND THIS POINT P104 351E | | S1 | 14 tooth spline
12/24 pitch
(ANSI B92.1B 1996 - Class
6e) | 800 [7080] | MOUNTING FLANGE $8
\pm 0.8$ $[0.31 \pm 0.03]$ 14 TEETH 12/24 PITCH 29.634 [1.167] PITCH θ 30° PRESSURE ANGLE FILLET ROOT SIDE FIT COMPATIBLE WITH ANSI B92.1B-1996 CLASS 6e. ALSO MATES WITH FLAT ROOT SIDE FIT 025.52 MAX $[1.005]$ 025.52 MAX $[1.005]$ 031.14 ± 0.08 $[1.226 \pm 0.003]$ 47.6 ± 0.06 $[1.874 \pm 0.024]$ —COUPLING MUST NOT PROTRUDE BEYOND THIS POINT P104349 | | \$2 | 17 tooth spline 12/24 pitch (ANSI B92.1B 1996 - Class 6e) | 1150 [10178] | 8 ± 0.8 [0.31 ± 0.03] TEETH 12/24 PITCH 35.983 (1.417) PITCH 0/30° PRESSURE ANGLE FILLET ROOT SIDE FIT COMPATIBLE WITH ANSI B92.1B-1996 CLAS5 6e ALSO MATES WITH FLAT ROOT SIDE FIT 0/37.91 ± 0.09 (1.49 ± 0.0035) (1.571 ± 0.0035) (1 | 1. See *Input shaft torque ratings* for an explaination of maximum torque. # **Installation drawings** #### **Axial Ported Endcap** ## **Axial Ported Endcap Installation Dimensions** # **Right Fan Drive Control** # **Radial Ported Endcap Split Flange Ports** © Danfoss | January 2022 BC152886483703en-001201 | 181 # **Radial Ported Endcap Rear View** # **Radial Ported Endcap Installation Dimensions** © Danfoss | January 2022 BC152886483703en-001201 | 183 # **Right Angle Sensor Position Installation Dimensions** # **Front Mounting Flange** #### **Auxiliary mounting pads** #### SAE-A auxiliary mounting pad ### Dimensions #### **Specifications** | Coupling | 9-tooth | 11-tooth | |---------------------------|----------------------|-----------------------| | Spline minimum engagement | 13.5 mm [0.53 in] | 15 mm [0.59 in] | | Maximum torque | 107 N•m [950 lbf•in] | 147 N•m [1300 lbf•in] | | Dimension A | 14.9 mm [0.59 in] | 16.1 mm [0.63 in] | © Danfoss | January 2022 BC152886483703en-001201 | 185 ## SAE-B auxiliary mounting pad #### **Dimensions** #### Specifications | Coupling | 13-tooth | 15-tooth | |---------------------------|-----------------------|-----------------------| | Spline minimum engagement | 14.2 mm [0.56 in] | 18.9 mm [0.74 in] | | Maximum torque | 249 N•m [2200 lbf•in] | 339 N•m [3000 lbf•in] | | Dimension A | 20.7 mm [0.81 in] | 12.7 mm [0.5 in] | ## SAE-C auxiliary mounting pad ### Dimensions 186 | © Danfoss | January 2022 # Specifications | Coupling | 14-tooth | |---------------------------|-----------------------| | Spline minimum engagement | 18.3 mm [0.72 in] | | Maximum torque | 339 N·m [3000 lbf•in] | # Running Cover ## Dimensions # **Radial Endcap Clockwise** # **Radial Endcap Counterclockwise** ## **Axial Endcap Clockwise** P108 456E # **Axial Endcap Counterclockwise** # **Displacement limiter** Series 45 F90C and F74B open circuit pumps are available with an optional adjustable displacement limiter. This adjustable stop limits the pump's maximum displacement. ## Setting range | F90C | 45.6 to 90 cm ³ [2.78 to 5.49 in ³] | |------|--| | F74B | 34.1 to 74 cm ³ [1.92 to 4.52 in ³] | # Displacement per turn | F90C | 6.8 cm³/rev [0.41 in³/rev] | |------|----------------------------| | F74B | 6.1 cm³/rev [0.37 in³/rev] | # Displacement limiter cross-section #### Design Series 45 Frame E pumps have a single servo piston design with a cradle-type swashplate set in polymer-coated journal bearings. A bias spring and internal forces increase swashplate angle. The servo piston decreases swashplate angle. Nine reciprocating pistons displace fluid from the pump inlet to the pump outlet as the cylinder block rotates on the pump input shaft. The block spring holds the piston slippers to the swashplate via the slipper retainer. The cylinder block rides on a bi-metal valve plate optimized for high volumetric efficiency and low noise. Tapered roller bearings support the input shaft and a viton lipseal protects against shaft leaks. An adjustable one spool (PC only, not shown) or two spool (LS and PC) control senses system pressure and load pressure (LS controls). The control ports system pressure to the servo piston to control pump output flow. #### Frame E cross section P104001 # **Technical Specifications** | | | | E Frame | | | |--|---------------------------------|------------------------------|---------------------|---------------------|---------------------| | | | Unit | 100B | 130B | 147C | | Maximum Displace | ment | cm³ [in³] | 100 [6.1] | 130 [7.93] | 147 [8.97] | | Working Input | Minimum | min -1 (rpm) | 500 | 500 | 500 | | Speed | Continuous | | 2450 | 2200 | 2100 | | | Maximum | | 2880 | 2600 | 2475 | | Working Pressure | Continuous | bar [psi] | 310 [4500] | 310 [4500] | 260 [3770] | | | Maximum | | 400 [5800] | 400 [5800] | 350 [5075] | | Flow at rated speed (theoretical) | | l/min
[US gal/min] | 245
[64.7] | 286
[75.6] | 309
[81.6] | | Input torque at ma
(theoretical) at 49° | ximum displacement
C [120°F] | N•m/bar
[lbf•in/1000 psi] | 1.592
[972] | 2.07
[1263.6] | 2.341
[1428.8] | | Mass moment of in components | ertia of internal rotating | kg•m²
[slug•ft²] | 0.0128
[0.00944] | 0.0128
[0.00944] | 0.0128
[0.00944] | | Weight | Axial ports | kg [lb] | 51.3 [113] | [113] | | | | Radial ports | | 54.9 [121] | | | | External Shaft | External moment (Me) | N•m [lbf•in] | 455 [4027] | 360 [3186] | 396 [3505] | | Loads | Thrust in (Tin), out (Tout) | N [lbf] | 2846 [640] | 1735 [390] | 2113 [475] | | Mounting flange | Vibratory (continuous) | N•m [lbf•in] | 1920 [17000] | | | | load moments | Shock (maximum) | | 6779 [60000] | | | ## Order code # Code description | Code | Description | |------|--| | R | Product Frame, Variable Open Circuit Pump | | S | Rotation | | Р | Displacement | | С | Control Type | | D | Pressure Compensator Setting | | E | Load Sense Setting | | F | Not Used | | G | Choke Orifice | | Н | Gain Orifice | | J | Input Shaft/Auxiliary Mount/Endcap | | K | Shaft Seal/Front Mounting Flange/Housing Ports | | L | Displacement Limiter | | М | Special Hardware | | N | Special Features | © Danfoss | January 2022 BC152886483703en-001201 | 191 # R Product | | | E Frame | | | |----|--|---------|------|------| | | | 100B | 130B | 147C | | ER | E Frame, variable displacement open circuit pump | • | • | • | # S Rotation | L | Left Hand (counterclockwise) | • | • | • | |---|------------------------------|---|---|---| | R | Right Hand (clockwise) | • | • | • | # P Displacement | 100B | 100 cm³/rev [6.10 in³/rev] | • | | | |------|----------------------------|---|---|---| | 130B | 130 cm³/rev [7.93 in³/rev] | | • | | | 147C | 147 cm³/rev [8.97 in³/rev] | | | • | # C Control type | | | 100B | 130B | 147C | |-----|---|------|------|------| | PC | Pressure Compensator | | • | | | BC* | Pressure Compensator [>280 bar] | • | • | | | RP | Remote Pressure Compensator | • | • | • | | BP* | Remote Pressure Compensator [>280 bar] | • | • | | | FM* | Load Sensing/Pressure Comp. (NO, 24VDC) Left | • | • | • | | LS | Load Sensing/Pressure Comp. | • | • | • | | BS* | Load Sensing/Pressure Comp. [>280 bar] | • | • | | | LB | Load Sensing/Pressure Comp. with internal bleed orifice | • | • | • | | BB* | Load Sensing/Pressure Comp. with internal bleed orifice [>280 bar] | • | • | | | AN | Electric On/Off w/Pressure Comp. (NO, 12VDC) Left | • | • | • | | CN | Electric On/Off w/Pressure Comp. (NO, 24VDC) Left | | • | • | | AR | Electric On/Off w/Pressure Comp. (NC, 12VDC) Left | | | • | | CR | Electric On/Off w/Pressure Comp. (NC, 24VDC) Left | | • | • | | AF | Electric On/Off w/Pressure Comp. (NO, 12VDC) Right | | • | • | | AT | Electric On/Off w/Pressure Comp. (NO, 24VDC) Right | | | • | | AG | Electric On/Off w/Pressure Comp. (NC, 12VDC) Right | | • | • | | AY | Electric On/Off w/Pressure Comp. (NC, 24VDC) Right | | | | | BN* | Electric On/Off w/Pressure Comp. (NO, 12VDC) [>280 bar] Left | | | | | DN* | Electric On/Off w/Pressure Comp. (NO, 24VDC) [>280 bar] Left | | • | | | BR* | Electric On/Off w/Pressure Comp. (NC, 12VDC) [>280 bar] Left | | | | | DR* | Electric On/Off w/Pressure Comp. (NC, 24VDC) [>280 bar] Left | | | | | BF* | Electric On/Off w/Pressure Comp. (NO, 12VDC) [>280 bar] Right | | • | | | DF* | Electric On/Off w/Pressure Comp. (NO, 24VDC) [>280 bar] Right | | | | | BE* | Electric On/Off w/Pressure Comp. (NC, 12VDC) [>280 bar] Right | | | | | BG* | Electric On/Off w/Pressure Comp. (NC, 24VDC) [>280 bar] Right | | | | | AX | Electric Proportional Pressure Control w/Pressure Comp.
(NO,12VDC) Left | | • | • | | CL | Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) Left | | | • | | | | 1 | 1 | | 192 | © Danfoss | January 2022 BC152886483703en-001201 # C Control type (continued) | | | 100B | 130B | 147C | |-----|--|------|------|------| | AH | Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) Left | | | | | AL | Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) Left | • | | | | AW | Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) Right | • | | | | CK | Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) Right | • | | | | AV | Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) Right | • | | • | | AK | Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) Right | • | • | • | | BX* | Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) [>280 bar] Left | • | • | | | DL* | Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) [>280 bar] Left | • | • | | | BH* | Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) [>280 bar] Left | • | • | | | BL* | Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) [>280 bar] Left | • | • | | | BW* | Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) [>280 bar]
Right | • | • | | | DK* | Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) [>280 bar]
Right | • | • | | | BM* | Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) [>280 bar]
Right | • | • | | | BK* | Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) [>280 bar]
Right | • | • | | | FA* | Electric On/Off Dump valve w/Pressure Comp. + Load Sense (NC, 12VDC) Right | • | • | • | | FB* | Electric On/Off Dump valve w/Pressure Comp. + Load Sense (NC, 12VDC) Left | • | • | • | | FE* | Electric On/Off Dump valve w/Pressure Comp. + Load Sense (NC, 24VDC), Left | • | • | • | | TA | Electronic Torque Limiting Control w/Pressure Compensation/Load Sensing (NC, 12VDC), Left | • | • | • | | ТВ | Electronic Torque Limiting Control w/Pressure Compensation/Load Sensing (NC, 24VDC), Left | • | • | • | | TC | Electronic Torque Limiting Control w/Pressure Compensation/Load Sensing (NC, 12VDC), (>280bar) Left | • | • | • | | TD | Electronic Torque Limiting Control w/Pressure Compensation/Load Sensing (NC, 12VDC), (>280bar) Left | • | • | • | | TE | Electronic Torque Limiting Control w/Pressure Compensation/Load Sensing (NC, 12VDC), Right | • | • | • | | TF | Electronic Torque Limiting Control w/Pressure Compensation/Load Sensing (NC, 24VDC), Right | • | • | • | | TG | Electronic Torque Limiting Control w/Pressure Compensation/Load Sensing (NC, 12VDC), (>280bar) Right | • | • | • | | TH | Electronic Torque Limiting Control w/Pressure Compensation/Load Sensing (NC, 24VDC), (>280bar) Right | • | • | • | Left - E-Frame: CW Only, F-Frame: CW Only, J-frame: CW Axial, CCW Radial Right - E-Frame: CCW Only, F-Frame: CCW Only, J-frame: CCW Axial, CW Radial ^{*} Not available on 147cc pumps ## DPC setting (2 digit code, 10 bar increments) | | | | E Frame | | | |---------|-----------------------------------|-----------|---------|------|--| | | | 100B 130B | | 147C | | | Example | 25 = 250 bar (3625 psi) | | | • | | | 10–26 | 100 to 260 bar [1450 to 3771 psi] | • | • | • | | | 27-28 | 270 to 280 bar [3916 to 4061 psi] | • | • | | | | 29-31 | 290-310 bar [4206 to 4496 psi] | • | • | | | ## E Load sensing setting (2 digit code, 1 bar increments) | Example | 20 = 20 bar (290 psi) | | | | |---------|---|---|---|---| | 10-34 | 10 to 34 bar [145 to 508 psi] | • | • | • | | NN | Not applicable (pressure compensated only controls) | • | • | • | ## F Not used ## G Servo Control Orifice | N | None (standard) | • | • | • | |---|-----------------|---|---|---| | E | 0.8 mm diameter | • | • | • | | F | 1.0 mm diameter | • | • | • | ## H Gain Orifice | 3 | 1.0 mm diameter | • | • | • | |---|--|---|---|---| | С | 0.8 mm diameter Electronic Torque Limiting Control Orifice (with standard orifice) | • | • | • | Additional LS signal line orifice size options are available for necessary system tuning requirements. Contact your Danfoss representative for further information. # J Input Shaft | K5 | 1.5 inch straight keyed | |----|-------------------------| | S1 | 14 tooth 12/24 pitch | | S2 | 17 tooth, 12/24 pitch | | S4 | 13 tooth, 8/16 pitch | # Auxiliary Mount/Endcap Style | Auxiliary
Description | Endcap
Style | Inlet
Porting | Outlet
Porting | Endcap Description | Code | |--------------------------|-----------------|------------------|-------------------|---|------| | None | Axial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads) | NL | | None | Axial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port M12 metric threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port M12 metric threads) | N1 | 194 | © Danfoss | January 2022 # Auxiliary Mount/Endcap Style (continued) | None | Radial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads) | NP | |--|--------|-----------------|-----------------|---|----| | N1 Endcap
Option | | | | | | | Running
Cover | Radial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads) | RP | | SAE-A, 11
teeth | Radial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads) | TP | | SAE-A, 9
teeth | Radial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads) | AP | | SAE-B, 13
teeth | Radial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads) | BP | | SAE-B, 14
teeth | Radial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads) | LP | | SAE-BB, 13
teeth/with
M12 thread | Radial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port M12 metric threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port M12 metric threads) | U6 | | SAE-BB, 15
teeth | Radial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads) | VP | | SAE-C, 14
teeth | Radial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads) | СР | | SAE-CC, 17
teeth | Radial | Split
Flange | Split
Flange | Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads) | WP | # J Input Shaft/Auxiliary Mount/Endcap **Available Combinations** | | E Frame | | | | |------|---------|------|------|--| | | 100B | 130B | 147C | | | K5AP | • | • | • | | | K5BP | • | • | • | | | K5CP | • | • | • | | | K5D7 | • | • | • | | | | E Frame | | | |------|---------|------|------| | | 100B | 130B | 147C | | K5NL | • | • | • | | K5NP | • | • | • | | K5RP | • | • | • | | KSVP | • | • | • | | S1AP | • | • | • | | S1BP | • | • | • | | S1CP | • | • | • | | S1LP | • | • | • | | S1NL | • | • | • | | S1N1 | • | • | • | | S1NP | • | • | • | | S1RP | • | • | • | | S1TP | • | • | • | | S1VP | • | • | • | | S2AP | • | • | • | | | E Frame | | | |------|---------|------|------| | | 100B | 130B | 147C | | S2BP | • | • | • | | S2CP | • | • | • | | S2NL | • | • | • | | S2NP | • | • | • | | S2RP | • | • | • | | S2TP | • | • | • | | S2VP | • | • | • | | S2WP | • | • | • | | S4AP | • | • | • | | S4BP | • | • | • | | S4CP | • | • | • | | S4NL | • | • | • | | S4NP | • | • | • | | S4RP | • | • | • | | S4U6 | • | • | • | | S4TP | • | • | • | | S4VP | • | • | • | | S4WP | • | • | • | # K Shaft seal | | | | 100B | 130B | 147C | |---|---|----------------|------|------|------| | Α | 4 | Single (Viton) | • | • | • | 196 | © Danfoss | January 2022 BC152886483703en-001201 | 1/ 1 4 | ~ ~ | | | | |---------------|----------|-----|-----------|------------| | K Mounting | i tianao | and | haiisina | nort ctule | | IN IVIOUITUIT | HIGHIGO | unu | iiousiiiq | PULLSLYIC | | | 1 | SAE-C Flange 4-bolt/SAE O-ring boss ports | • | • | | |--|---|---|---|---|--| |--|---|---|---|---|--| # K Angle Sensor Housing | R | Angle Sensor Housing, Right Hand Side | • | • | • | 1 | |---|---------------------------------------|---|---|---|---| |---|---------------------------------------|---|---|---|---| # L Displacement limiter | N | INN | None
(plugged) | • | • | • | |---|-----|--------------------------------------|---|---|---| | Α | AA | Adjustable, factory set at max angle | • | • | • | # M Special hardware | NNN | None | • | • | ٠ | |-----|-------------------------|---|---|---| | ANS | Angle Sensor Swashplate | • | • | • | # N Special features | None · · · | |------------| |------------| #### **Performance E100B** The chart above shows allowable inlet pressure and speed at various displacements. Greater speeds and lower inlet pressures are possible at reduced displacement. Operating outside of acceptable limits reduces pump life. Frame E #### Performance E130B Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS]. P109281 The chart above shows allowable inlet pressure and speed at various displacements. Greater speeds and lower inlet pressures are possible at reduced displacement. Operating outside of acceptable limits reduces pump life. #### **Performance E147C** Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS]. P104019 Shaft Speed min' (rpm) The chart above shows allowable inlet pressure and speed at various displacements. Greater speeds and lower inlet pressures are possible at reduced displacement. Operating outside of acceptable limits reduces pump life. 200 | © Danfoss | January 2022 # **Hydraulic Controls** ## **Pressure Compensated Controls** # Response/recovery times | (ms) | Response | Recovery | |-------|----------|----------| | E100B | 45 | 175 | | E130B | 55 | 175 | | E147C | 60 | 190 | # PC Setting range | Model | PC | ВС | |-------|--------------------------------|--------------------------------| | E100B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | E130B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | E147C | 100-260 bar
[1450-3770 psi] | N/A | ## Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port M4 = Servo pressure gauge port # **Remote Pressure Compensated Controls** # Response/recovery times | (ms) | Response | Recovery | |-------|----------|----------| | E100B | 45 | 175 | | E130B | 55 | 175 | | E147C | 60 | 190 | © Danfoss | January 2022 # PC Setting range | Model | RP | ВР | |-------|--------------------------------|--------------------------------| | E100B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | E130B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | E147C | 100-260 bar
[1450-3770 psi] | N/A | #### Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port M4 = Servo pressure gauge port X = Remote PC port # **Load Sensing/Pressure Compensated** # Response/recovery times | (ms) | Response | Recovery | |-------|----------|----------| | E100B | 45 | 200 | | E130B | 50 | 200 | | E147C | 60 | 200 | # PC Setting range | Model | LS | BS | |-------|--------------------------------|--------------------------------| | E100B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | E130B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | E147C | 100-260 bar
[1450-3770 psi] | N/A | ## LS setting range | Model | bar | psi | |-------|-------|---------| | All | 10–30 | 145–435 | ## Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port M4 = Servo pressure gauge port X = LS signal port # **Load Sensing Control with Bleed Orifice/Pressure Compensated** ## Response/recovery times* | (msec) | Response | Recovery | |--------|----------|----------| | E100B | 45 | 200 | | E130B | 50 | 200 | | E147C | 60 | 200 | # PC setting range | Model | LB | ВВ | |-------|--------------------------------|--------------------------------| | E100B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | E130B | 100-280 bar
[1450-4060 psi] | 290-310 bar
[4205-4495 psi] | | E147C | 100-260 bar
[1450-3770 psi] | N/A | # LS setting range | Model | bar | psi | |-------|-------|---------| | All | 10–34 | 145–435 | # Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port M4 = Servo pressure gauge port X = LS signal port ## **Electric Controls** # Connectors | Description | Quantity | Ordering Number | |--------------------------------|----------|-------------------------| | Mating Connector | 1 | Deutsch® DT06-2S | | Wedge Lock | 1 | Deutsch® W25 | | Socket Contact (16 and 18 AWG) | 2 | Deutsch® 0462-201-16141 | | Danfoss mating connector kit | 1 | K29657 | # **Continuous Duty Operating Range** ## **Solenoid Data - Normally Closed** | Voltage | 12V | 24V | |---|---------|---------| | Threshold Control [mA] (310/260 bar PC setting, oil temp X) | 200/400 | 100/200 | | End Current [mA] (20 bar LS setting, oil temp X) | 1200 | 600 | #### **Solenoid Data - Normally Open** | Voltage | 12V | 24V | |--|-----------|---------| | Threshold Control [mA] (20 bar LS setting, oil temp X) | 0 | 0 | | End Current [mA] (260/310 bar PC setting, oil temp X) | 1000/1100 | 500/550 | #### Hysteresis | Frame | Hysteresis | |--------------|---| | E100B, E130B | Input hysteresis <4% (control current): Output hysteresis <4.5% (system pressure) | | E147C | Input hysteresis <4% (control current): Output hysteresis <4.5% (system pressure) | # Normally Closed Electric On/Off with Pressure Compensation Controls ## Response/Recovery times* | (msec) | Response | Recovery | |--------|----------|----------| | E100B | 45 | 175 | | E130B | 55 | 175 | | E147C | 60 | 190 | #### * Without servo control orifice For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. #### Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port X = Load Sense Port ## LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 10 - 40 | [145 - 580] | # PC setting range | Frame | AG, AR (12V) | BE, BR (12V) | AY, CR (24V) | BG, DR (24V) | |-------|--------------------------------|-----------------|--------------------------------|-----------------| | E100B | 100-280 bar | 290-310 bar | 100-280 bar | 290-310 bar | | E130B | [1450-4060] psi | [4205-4495] psi | [1450-4060] psi | [4205-4495] psi | | E147C | 100-260 bar
[1450-3770] psi | Not Available | 100-260 bar
[1450-3770] psi | Not Available | # Normally Open Electric On/Off with Pressure Compensation Controls ## Response/Recovery times* | (msec) | Response | Recovery | |--------|----------|----------| | E100B | 45 | 175 | | E130B | 55 | 175 | | E147C | 60 | 190 | ## * Without servo control orifice For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. 206 | © Danfoss | January 2022 ## Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port X = Load Sense Port ## LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 10 - 40 | [145 - 580] | ## PC setting range | Frame | AF, AN (12V) | BF, BN (12V) | AT, CN (24V) | DF, DN (24V) | |-------|--------------------------------|-----------------|--------------------------------|-----------------| | E100B | 100-280 bar | 290-310 bar | 100-280 bar | 290-310 bar | | E130B | [1450-4060] psi | [4205-4495] psi | [1450-4060] psi | [4205-4495] psi | | E147C | 100-260 bar
[1450-3770] psi | Not Available | 100-260 bar
[1450-3770] psi | Not Available | # Normally Closed Electric Proportional with Pressure Compensation Controls # Response/Recovery times | | 0.8mm Orifice | | 1.0mm Orifice | | |--------|---------------|----------|---------------|----------| | (msec) | Response | Recovery | Response | Recovery | | E100B | 45 | 530 | 45 | 405 | | E130B | 55 | 530 | 55 | 405 | | E147C | 60 | 580 | 60 | 440 | ## LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 10 - 40 | [145 - 580] | ### Schematic B = Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port X = Load Sense Port ### PC setting range | Frame | AH, AV (12V) | BH, BM (12V) | AK, AL (24V) | BK, BL (24V) | |-------|--------------------------------|-----------------|--------------------------------|-----------------| | E100B | 100-280 bar | 290-310 bar | 100-280 bar | 290-310 bar | | E130B | [1450-4060] psi | [4205-4495] psi | [1450-4060] psi | [4205-4495] psi | | E147C | 100-260 bar
[1450-3770] psi | Not Available | 100-260 bar
[1450-3770] psi | Not Available | For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. Electric proportional controls have a unique relationship between margin (LS) setting and low pressure standby. See the graph below for this relationship. Frames E, F, J Electric Proportional Control Low Pressure Standby 208 | $^{\mathbb{O}}$ Danfoss | January 2022 ## **Normally Open Electric Proportional with Pressure Compensation Controls** ### Response/Recovery times | | 0.8mm Orifice | | 1.0mm Orifice | | |--------|---------------|----------|---------------|----------| | (msec) | Response | Recovery | Response | Recovery | | E100B | 45 | 530 | 45 | 405 | | E130B | 55 | 530 | 55 | 405 | | E147C | 60 | 580 | 60 | 440 | ### LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 10 - 40 | [145 - 580] | ### Schematic B =
Outlet S = Inlet L1, L2 = Case drain M2 = System pressure gauge port X = Load Sense Port ### PC setting range | Frame | AW, AX (12V) | BW, BX (12V) | CK, CL (24V) | DK, DL (24V) | |-------|--------------------------------|-----------------|--------------------------------|-----------------| | E100B | 100-280 bar | 290-310 bar | 100-280 bar | 290-310 bar | | E130B | [1450-4060] psi | [4205-4495] psi | [1450-4060] psi | [4205-4495] psi | | E147C | 100-260 bar
[1450-3770] psi | Not Available | 100-260 bar
[1450-3770] psi | Not Available | For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. Electric proportional controls have a unique relationship between margin (LS) setting and low pressure standby. See the graph below for this relationship. Frames E, F, J Electric Proportional Control Low Pressure Standby ## Normally Closed Electric Torque Limiting Control with Pressure Compensation Controls ### Response/recovery times | (ms) | Response | Recovery | |-------|----------|----------| | E100B | 45 | 200 | | E130B | 50 | 200 | | E147C | 60 | 200 | ### Pin location P200 151 ### Pinout | Pin | Description | |-----|-----------------------------------| | 1 | Supply - | | 2 | Ouput signal 2 - Secondary Signal | | 3 | Output signal 1 - Primary Signal | | 4 | Supply + | ## PC Setting range | Frame | TA, TE (12Vdc) | TC, TG (12Vdc) | TB, TF (24Vdc) | TD, TH (24Vdc) | |-------|--------------------------------|-----------------|--------------------------------|-----------------| | E100B | 100-280 bar | 290-310 bar | 100-280 bar | 290-310 bar | | | [1450-4060 psi] | [4205-4495 psi] | [1450-4060 psi] | [4205-4495 psi] | | E130B | 100-280 bar | 290-310 bar | 100-280 bar | 290-310 bar | | | [1450-4060 psi] | [4205-4495 psi] | [1450-4060 psi] | [4205-4495 psi] | | E147C | 100-260 bar
[1450-3770 psi] | N/A | 100-260 bar
[1450-3770 psi] | N/A | 210 | © Danfoss | January 2022 BC152886483703en-001201 ### LS setting range | Model | bar | psi | |-------|---------|-------------| | All | 10 - 40 | [145 - 580] | For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications. ## E-frame pump with integrated ETL control # Input shafts ## Shaft data | Code | Description | Maximum torque rating ¹
N•m [lbf•in] | Drawing | | | | | | |------|--|--|--|--|--|--|--|--| | K5 | Ø 38.08 mm [1.5 in]
Straight keyed | 1161 [10 270] | 9.525 [0.375] X 38.1 [1.5] LONG SQUARE KEY Ø38.075 ± 0.025 [1.5 ± 0.0009] 23.5 max. Ø42.26 ± 0.125 [1.664 ± 0.005] 54.0 ± 0.63 [2.13 ± 0.025] COUPLING MUST NOT PROTRUDE BEYOND THIS POINT P104 037E | | | | | | | S1 | 14-tooth spline
12/24 pitch
(ANSI B92.1B 1996 - Class 5) | 800 [7080] | ### 0.055 14 TOOTH 12/24 PITCH 12/24 PITCH 30° PRESSURE ANGLE 29.634 (1.67) PITCH Ø FILLET ROOT SIDE FIT COMPATIBLE WITH ANSI B92.1B-1996 CLASS 6e - ALSO MATES WITH FLAT ROOT SIDE FIT COMPATIBLE WITH ANSI B92.1B-1996 CLASS 6e - ALSO MATES WITH FLAT ROOT SIDE FIT COMPATIBLE WITH ANSI B92.1B-1996 CLASS 6e - ALSO MATES WITH FLAT ROOT SIDE FIT COMPATIBLE WITH ANDIBLE ROO | | | | | | | S2 | 17-tooth spline 12/24 pitch (ANSI B92.1B 1996 - Class 5) | 1150 [10178] | ### 17 TOOTH 12/24 PITCH 30° PRESSURE ANGLE 35° 933 [1.417] PITCH DIA FILLET ROOT SIDE FIT COMPATIBLE WITH ANSI 892.18-1996 CLASS 6e ALSO MATES WITH FLAT ROOT SIDE FIT ### 236.66 ± 0.08 [1.443 ± 0.003] 34 ± 0.15 [1.339 ± 0.006] 54.0 ± 0.55 [2.13 ± 0.022] COUPLING MUST NOT PROTRUDE BEYOND THIS POINT | | | | | | 1. See *Input shaft torque ratings* for an explanation of maximum torque. 212 | © Danfoss | January 2022 BC152886483703en-001201 ### Shaft data | Code | Description | Maximum torque rating ¹
N-m [lbf-in] | Drawing | |------|---|--|---| | S4 | 13-tooth spline
8/16 pitch
(ANSI B92.1B 1996 - Class 5) | 1560 [13 807] | 13 TOOTH 8/16 PITCH 30° PRESSURE ANGLE 41.28 [1.625] PITCH DIA FILLET ROOT SIDE FIT COMPATIBLE WITH ANSI B92.1B-1996 CLASS 6e ALSO MATES WITH FLAT ROOT SIDE FIT O34.25 [1.348] MAX Ø43.94 ± 0.08 [1.73 ± 0.003] 42 ± 0.15 [1.654 ± 0.006] 67.0 ± 0.55 [2.64 ± 0.022] COUPLING MUST NOT PROTRUDE BEYOND THIS POINT | 1. See *Input shaft torque ratings* for an explanation of maximum torque. ## **Installation drawings** ### **Axial Ported Endcap** ## **Axial Ported Endcap Installation Dimensions** ## **Radial Ported Endcap Installation Dimensions** ## **Right Angle Sensor Position Installation Dimensions** The location convention for the E-Frame angle sensor is different from that of the J & F-Frame due to a difference in design of the endcap and servo systems. When looking at the input shaft, the angle sensor will be positioned on the same side as the outlet port of the endcap. The outlet port of the endcap is always the smaller of the inlet and outlet ports, indicated below. This is the 'right side' order code location, even though it appears on the left hand side from a frontal view. Clockwise rotation E-frames appear with the control on the top side in this view. Counter-clockwise rotation E-Frames appear with the control on the bottom side in this view. 216 | © Danfoss | January 2022 ## **Radial Ported Endcap Rear View** ### **Radial Ported Endcap Split Flange Ports** © Danfoss | January 2022 BC152886483703en-001201 | 217 # **Front Mounting Flange** # **Endcap Dimensions** Radial Endcap Counterclockwise Axial Endcap Clockwise **Axial Endcap Counterclockwise** # **Auxiliary mounting pads** ### SAE-A Dimensions ### Specifications | Coupling | 9-tooth | 11-tooth | | | |---------------------------|----------------------|-----------------------|--|--| | Spline minimum engagement | 13.5 mm [0.53 in] | 13.5 mm [0.53 in] | | | | Maximum torque | 107 N•m [950 lbf•in] | 147 N•m [1300 lbf•in] | | | 220 | © Danfoss | January 2022 BC152886483703en-001201 | 221 ### Frame E ### **SAE-B Dimensions** ### **Specifications** | Coupling | 13 tooth | 15 tooth | 14 tooth | | |---------------------------|-----------------------|-----------------------|-----------------------|--| | Spline Minimum Engagement | 14.2 [0.559] | 16.1 [0.634] | 18.3 [0.720] | | | Maximum Torque | 249 N•m [2200 lbf•in] | 339 N•m [3000 lbf•in] | 452 N•m [4000 lbf•in] | | | Dimension A | 9.21 [0.36] | 9.21 [0.36] | 32.11 [1.26] | | | Dimension B | 68.91 [2.71] | 68.91 [2.71] | 57.31 [2.256] | | © Danfoss | January 2022 ### SAE-C Dimensions ### **Specifications** | Coupling | 14-tooth | 17-tooth | | | |---------------------------|-----------------------|-----------------------|--|--| | Spline minimum engagement | 18.3 mm [0.72 in] | 18.3 mm [0.72 in] | | | | Maximum torque | 452 N•m [4000 lbf•in] | 452 N•m [4000 lbf•in] | | | ### **Displacement Limiters** E Frame open circuit pumps are available with an optional adjustable displacement limiter. This adjustable stop limits the pump's maximum displacement. ### Setting range | E100B | 40 to 100 cm ³ [2.44 to 6.1 in ³] | |-------|---| | E130B | 70 to 130 cm ³ [4.27 to 7.93 in ³] | | E147C | 87 to 147 cm ³ [5.31 to 8.97 in ³] | ###
Displacement per turn | E100B | 8.4 cm³/rev [0.51 in³/rev] | |-------|----------------------------| | E130B | 8.4 cm³/rev [0.51 in³/rev] | | E147C | 8.4 cm³/rev [0.51 in³/rev] | ### Displacement limiter cross-section # Dimensions #### Products we offer: - Cartridge valves - DCV directional control valves - · Electric converters - Electric machines - Electric motors - Gear motors - Gear pumps - Hydraulic integrated circuits (HICs) - · Hydrostatic motors - Hydrostatic pumps - Orbital motors - PLUS+1® controllers - PLUS+1® displays - PLUS+1* joysticks and pedals - PLUS+1® operator interfaces - PLUS+1® sensors - PLUS+1® software - PLUS+1° software services, support and training - Position controls and sensors - PVG proportional valves - Steering components and systems - Telematics **Hydro-Gear** www.hydro-gear.com **Daikin-Sauer-Danfoss** www.daikin-sauer-danfoss.com **Danfoss Power Solutions** is a global manufacturer and supplier of high-quality hydraulic and electric components. We specialize in providing state-of-the-art technology and solutions that excel in the harsh operating conditions of the mobile off-highway market as well as the marine sector. Building on our extensive applications expertise, we work closely with you to ensure exceptional performance for a broad range of applications. We help you and other customers around the world speed up system development, reduce costs and bring vehicles and vessels to market faster. Danfoss Power Solutions – your strongest partner in mobile hydraulics and mobile electrification. ### Go to www.danfoss.com for further product information. We offer you expert worldwide support for ensuring the best possible solutions for outstanding performance. And with an extensive network of Global Service Partners, we also provide you with comprehensive global service for all of our components. Local address: Danfoss Power Solutions (US) Company 2800 East 13th Street Ames, IA 50010, USA Phone: +1 515 239 6000 Danfoss Power Solutions GmbH & Co. OHG Krokamp 35 D-24539 Neumünster, Germany Phone: +49 4321 871 0 Danfoss Power Solutions ApS Nordborgvej 81 DK-6430 Nordborg, Denmark Phone: +45 7488 2222 Danfoss Power Solutions Trading (Shanghai) Co., Ltd. Building #22, No. 1000 Jin Hai Rd Jin Qiao, Pudong New District Shanghai, China 201206 Phone: +86 21 2080 6201 Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved. ENGINEERING TOMORROW **Technical Information** # **D1 High Power Open Circuit Pumps** Size 130/145/193/260 # **Revision history** ## Table of revisions | Date | Changed | Rev | |----------------|--|------| | December 2021 | Updated shaft specifications drawings | 0501 | | October 2021 | Added new auxiliary mounting options, updated inlet pressure gauge port section, corrected displacement setting sections | 0401 | | February 2021 | Added angle sensor section for D1P 260 | 0305 | | June 2020 | Changed document number from 'BC00000243' and 'L1426007' to 'BC157786485289' and corrected shaft descriptions | 0304 | | June 2019 | Updated Model Code chapter | 0202 | | December 2018 | Updated shaft torque specifications | 0201 | | November 2018 | Added shaft option K | 0113 | | October 2018 | Minor Update | 0112 | | August 2018 | Minor Update (Model Code) | 0111 | | July 2018 | Minor Update | 0110 | | July 2018 | Added NPNR Control | 0109 | | June 2018 | Major Update | 0108 | | May 2018 | Added units and drawing | 0107 | | January 2017 | Added Size 130 | 0106 | | September 2016 | some update of drawing and numbers | 0105 | | May 2016 | Added Size 260 | 0104 | | March 2016 | minor update | 0103 | | February 2016 | minor update | 0102 | | January 2016 | Converted to Danfoss layout - DITA CMS | 0101 | | July 2015 | Updated drawings | AC | | April 2015 | Added 145 cc information | AB | | May 2014 | First edition | AA | 2 | © Danfoss | December 2021 BC157786485289en-000501 ## Contents | General Information | | | |--------------------------|--|----| | | Overview | | | | Features and benefits | | | | Typical applications | | | | Design | | | Technical Specifications | 5 | | | | Pump specifications | 9 | | | Fluid specifications | | | | D1P 260 angle sensor | | | | Angle sensor principle | | | | Location | | | | Angle sensor characteristics | | | | Angle sensor electrical specifications | | | | Angle sensor calibration | | | | Angle sensor functionality | 14 | | Model Code | | | | | Model code | 15 | | | Displacement, rotation and product version | 16 | | | Control types | 16 | | | Input shaft options | 17 | | | Mounting flange options | 17 | | | End cap and main port options | 17 | | | Auxiliary mounting flange options | | | | Power control settings | | | | Pressure compensated control settings | 19 | | | Load sensing control settings | | | | Hydraulic displacement control setting | | | | Maximum and minimum displacement settings | | | | Minimum displacement settings | | | | Special hardware and features | | | | Tandem pump information | 2 | | Parameters | | | | | Pressure | 22 | | | Speed | 22 | | | Performance | | | | Input power | 23 | | | Output flow | 25 | | | Efficiency | 26 | | | Fluid | 27 | | | Viscosity | 27 | | | Temperature | 27 | | | Fluid velocity | 27 | | | Shaft torque ratings | 28 | | | Shaft load | | | | Mounting flange loads | | | | Auxiliary mounting pads | | | | Estimating overhung load moments | | | | Understanding and minimizing system noise | | | | Installation | | | | Filtration | | | | Reservoir | | | | Sizing Equations | 3 | | Control Type | | | | | NPNN (Pressure Compensated Control) | | | | NPSN (Pressure Compensated Control + Load Sensing Control) | 34 | | | NPNR (Pressure Compensated Control + Remote Pressure Compensated Control) | | | | TPSN (Power Control + Pressure Compensated Control + Load Sensing Control) | 38 | | | | | **Installation Drawings** ### Contents | NNES (Electric Displacement Control + Load Sensing Control) | | |--|----| | Solenoid Specification | | | Standard EDC Valve | | | NNES Priority | | | TPE2/TPE5 (Power Control + Pressure Compensated Control + Electric Displacement Control) | | | TPE2/TPE5 Priority | | | NPE2/NPE0 (Pressure Compensated Control + Electric Displacement Control) | 45 | | Size 130/145 | 16 | | Dimensions (mm) and port descriptions | | | Size 130/145: TPSN w/o Charge Pump | | | Size 130/145: TPE5 w/o Charge Pump | | | Size 130/145: TPSN w/ Charge pump | | | Size 130/145: TPE5 w/ Charge Pump | | | Input shaft | | | Shaft specifications | | | Aux mounting flange | | | Size 130/145: Option NN (No Coupling) | | | Size 130/145: Option A1 (SAE-A, 9 teeth) | | | Size 130/145: Option A2 (SAE-A, 11 teeth) | | | Size 130/145: Option B1 (SAE-B, 13 teeth) | | | Size 130/145: Option B2 (SAE-B, 15 teeth) | | | Size 130/145: Option BA (SAE-B, 13 teeth) | | | Size 130/145: Option C5 (SAE-C, 14 teeth) | | | Size 130/145: Option D5 (SAE-D, 24 teeth) | | | Size 193 | | | Dimensions (mm) and port descriptions | | | Size 193: TPE2 w/ Charge Pump | | | Size 193: TPSN w/ Charge Pump | | | Input shaft | | | Shaft specifications | | | Aux mounting flange | | | Size 193: Option NN (No Coupling) | | | Size 193: Option A1 (SAE-A, 9 teeth) | | | Size 193: Option A3 (SAE-A, 13 teeth) | | | Size 193: Option B1 (SAE-B, 13 teeth) | | | Size 193: Option B2 (SAE-B, 15 teeth) | | | Size 193: Option BA (SAE-B, 13 teeth) | | | Size 193: Option BB (SAE-B, 13 teeth) | | | Size 193: Option C5 (SAE-C, 14 teeth) | | | Size 193: Option C9 (SAE-C, 13 teeth) | | | Size 193: Option D2 (SAE-D, 13 teeth) | | | Size 193: Option D5 (SAE-D, 24 teeth) | | | Size 193: Option E2 (SAE-E, 24 teeth) | | | Size 260 | | | Dimensions (mm) and port descriptions | | | Size 260: TPE2 w/ Charge Pump | | | Size 260: TPSN w/ Charge Pump | | | Input shaft | | | Shaft specifications | | | Aux mounting flange | | | Size 260: Option A1 (SAE-A, 9 teeth) | | | Size 260: Option A3 (SAE-A, 13 teeth) | | | Size 260: Option B1 (SAE-B, 13 teeth) | | | Size 260: Option B2 (SAE-B, 15 teeth) | | | Size 260: Option BA (SAE-B, 13 teeth) | | | Size 260: Option BB (SAE-B, 13 teeth) | | | Size 260: Option BB (SAE-B, 13 teeth) | | | Size 260: Option C9 (SAE-C, 14 teeth) | | | JIZC ZOO. OPHOH C୬ (JAL⁻C, TJ (CCHI) | 00 | # D1 High Power Open Circuit Pumps Size 130/145/193/260 # Contents | | Size 260: Option D2 (SAE-D, 13 teeth)
Size 260: Option D5 (SAE-D, 24 teeth)
Size 260: Option E2 (SAE-E, 24 teeth) | 88 | |------------------------|---|----| | | Size 260: Option D5 (SAE-D, 24 teeth) | 89 | | | Size 260: Option E2 (SAE-E, 24 teeth) | 89 | | | Size 260: Option E3 (SAE-E, 28 teeth) | 90 | | | Inlet pressure gauge port | 91 | | Additional Information | | | | | Tandem with Danfoss pumps | 93 | | | Tandem with Danfoss pumps
Tandem pump torque | 93 | | | Tightening torque | 94 | | Installation Notes | | | | | Below reservoir (standard) | 95 | | | Above reservoir | 96 | | | Reservoir installation | 97 | | Displacement Limiter | | | | • | Displacement limiter setting | 98 | | | | | ### **General Information** ### D1P overview The D1 pump series are high performance variable axial piston pumps designed primarily for open circuit hydraulic systems used in heavy duty mobile
applications. ### Displacement options - 130 cm³ [7.93 in³] - 145 cm³ [8.85 in³] - 193 cm³ [11.78 in³] - 260 cm³ [15.87 in³] ### **Product highlights** - Maximum working pressure: 350 bar [5076 psi], peak pressure (intermittent): 400 bar [5802 psi]. - Input speed up to 2,500 rpm. ### Control options - Mechanical power control - Electric power control - Pressure compensated control - Remote pressure compensated control - Electric proportional displacement control - Load sensing control ### D1P features and benefits - Robust design for harsh conditions. - Swashplate, servo-controlled design, with proven reliability and performance. - Angled piston bore design improves self-priming capability. - The spherical valve plate and cylinder block interface provide stable cylinder block rotation, thus achieving high efficiency. - Integral charge pump option allows the pump to run at higher speed and achieve good cold start performance. - Full through-drive capability is suitable for adding axial piston pumps and gear pumps. - Optimized cradle bearing improves pump service life. - PLUS+1[®] compliant controls. - Can be used together in combination with other Danfoss Power Solutions products in the overall hydraulic system, such as: - Pumps (S45, S90, H1P, gear pumps, etc.) - PVG valves - Motors (S90, H1B, etc). ## D1P typical applications - Concrete Machinery - Mining Machinery - Drilling Machinery - Material Handling - Marine and Off-shore Machinery - Oil Machinery ### **General Information** - Excavators - Wheel Loaders - Industrial Hydraulics ### Design ### D1P sectional view The cross sectional view of the D1P can be used to identify individual parts of the product. Series D1 pump (w/charge pump) cross-section view - 1. Shaft Seal - 4. Minimum Displacement Limiter - 7. Valve Plate - 10. Servo Piston - 13. Piston - 16. Input Shaft - 2. Roller Bearing - 5. Bias Piston - 8. End cap - 11. Cylinder Block - 14. Swashplate - 3. Housing - 6. Control (TPE5/TPE2) - 9. Charge Pump - 12. Maximum Displacement Limiter - 15. Swashplate Bearing Some internal parts may be different depending on frame size and options desired. ### **General Information** ## D1P schematic with charge pump Basic schematic without control/with charge pump The charge pump (see schematic) is a circulating pump with which the pump is charged and therefore can be operated at higher speeds. This also improves cold starting at low temperatures and high viscosity of the hydraulic fluid. The pressurized reservoir is therefore unnecessary in most cases. A reservoir pressure of a max. 2 bar is permissible with charge pump. 8 | © Danfoss | December 2021 BC157786485289en-000501 ### D1 130-260 pump specifications (Theoretical values, without efficiency and tolerances; value rounded) | | | | 130 | | 145 | | 193 | | 260 | | |--|--|------------------------------------|-------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--| | Fea | atures | Unit | W/O
Impeller | W/ Impeller | W/O
Impeller | W/ Impeller | W/O
Impeller | W/ Impeller | W/ Impeller | | | D: 1 . | Maximum | 3 r. 31 | 130 [7.93] | 130 [7.93] | 145 [8.85] | 145 [8.85] | 193 [11.78] | 193 [11.78] | 260 [15.87] | | | Displacement | Minimum | cm ³ [in ³] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Available veteties | | CCW [L] | • | • | • | • | | • | • | | | Available rotation | | CW [R] | • | • | • | • | • | • | • | | | | Min. | | 500 | 500 | 500 | 500 | 500 | 500 | 500 | | | Input speed | Rated at max.
displacement (Vg
max.) | rpm | 2200 ¹ | 2500 ² | 2200 ¹ | 2500 ² | 2200 ¹ | 2500 ¹ | 2300 ² | | | | Maximum at Vg < Vg max. ³ | | 2500 | 2500 | 2200 | 2500 | 2500 | 2500 | 2300 | | | Flow at max. speed & displacement (n max. & Vg max.) | | l/min
[US gal/
min] | 286 [76] | 325 [86] | 319 [84] | 363 [96] | 425 [112] | 483 [128] | 598 [158] | | | System (working) Max. working pressure | | bar [psi] | 350 [5076] | | | | | | | | | pressure ⁴ | Max. pressure | | 400 [5802] | | | | | | | | | Inlet pressure | Minimum | bar [psi] | 0.8 [11.6] | 0.6 [8.7] | 0.8 [11.6] | 0.6 [8.7] | 0.8 [11.6] | 0.6 [8.7] | 0.6 [8.7] | | | (absolute) | Maximum | | 30 [435] ⁵ | 2 [29] | 30 [435] | 2 [29] | 30 [435] | 2 [29] | 2 [29] | | | Case pressure (absolute) | Maximum above inlet | bar [psi] | 1.2 [17.4] | | | | | | | | | (absolute) | Maximum | | | | 2 [29] | | | | | | | Filling capacity | | L [US gal] | 2.9 [0.77] 2.9 [0.77] 3.8 [1] | | | | 4.6 [1.3] | | | | | Torque at Vg max. | & Δp = 350 bar | N•m
[lbf•in] | 724 [6408] | | 808 [7151] | | 1075 [9515] | | 1448
[12816] | | | Power at Q max. (n
bar | nax. flow) & Δp = 350 | kW [hp] | 159 [213] | 190 [255] | 186 [249] | 211 [283] | 248 [332] | 281 [377] | 349 [468] | | | | Mass moment of inertia of internal rotating components | | 0.0299
[0.0221] | 0.0306
[0.0226] | 0.0299
[0.0221] | 0.0306
[0.0226] | 0.0547
[0.0403] | 0.0576
[0.0426] | 0.2080
[0.1537] | | | Mass | | kg [lb] | 68 [150] | 74 [163] | 68 [150] | 74 [163] | 101 [222] | 106 [234] | 141 [311] | | | External shaft loads | External moment M _e | N•m
[lbf•in] | 476 [4213] | | 476 [4213] | | 822 [7275] | | 1081 [9568] | | | Mounting flange | Vibratory
(continuous) | N•m | 4553 [40297 |] | 4553 [40297] | | 6286 [55636] | | 8477
[75027] | | | load moments | Shock (maximum) | [lbf•in] | 8692 [76930] | | 8692 [76930] | | 13782 [121980] | | 16338
[144603] | | ¹ The values apply at absolute pressure (Pabs) of at least 0.8 bar [11.6psi] at the suction port S and mineral hydraulic fluid. Counterclockwise (CCW) & Clockwise (CW) directions as viewed from the shaft end of the pump. Exceeding the permissible values could cause a loss of function, reduced life or the destruction of the pump. Do not exceed the values shown in the table above. $^{^2}$ The values apply at absolute pressure (Pabs) of at least 0.6 bar [8.7psi] at the suction port S and mineral hydraulic fluid. $^{^{3}}$ The values apply at Vg ≤ Vg max or in case of an increase in the inlet pressure (Pabs) at the suction port S. Please refer to *Inlet Pressure vs Speed* Graph at *D1P speed overview* on page 22 ⁴ Applied pressures above maximum working pressure requires Danfoss application approval. Maximum (peak) pressure is the highest intermittent (t<1s) outlet pressure allowed. ⁵ If the application requires the higher inlet pressure than 5 bar [72.5psi] (up to 30 bar [435psi]), please contact.Danfoss Power Solutions. # D1P fluid specifications | Features | | Units | Value | |------------------------------------|---|------------|----------------------------| | Intermittent ¹⁾ Minimum | | | 5 [42] | | Viscosity | Minimum | mm²/sec | 7 [49] | | Viscosity | Recommended range | [SUS] | 16 - 36 [81 - 168] | | | Maximum (cold start) ²⁾ |] | 1600 [xxxxx] | | Tomporaturo rango | Minimum (cold start) ²⁾ | | -40 [-40 °F] | | Temperature range | Maximum intermittent ¹⁾ | - °C [°F] | 115 [239 °F] ³⁾ | | Filtration (minimum) | Temperature Range: -40 - 90 °C
[-40 - 194°F] | | 20/18/15 | | Cleanliness per ISO 4406 | Temperature Range: 90 - 115 °C
[194 - 239°F] | | 19/17/14 | ¹⁾ Intermittent = Short term t < 3min per incident. ²⁾ Cold start = Short term t < 3min, $p \le 30$ bar [435 psi], $n \le 1000 \text{ min}^{-1}(\text{rpm})$, please contact Danfoss Power Solutions especially when the temperature is below -25 °C [-13 °F]. $^{^{3)}}$ Must not be exceeded locally either (e.g. in the bearing area) . The temperature in the bearing area is (depending on pressure and speed) up to 5 °C [41 °F] higher than the average case drain temperature. ### D1P 260 angle sensor ### Angle sensor principle The angle sensor option is exclusive to the D1P 260. The angle sensor option offered in D1P allows users to measure the angle of pump displacement. The angle sensor is an electronic sensor mounted to the housing of the pump, which reads the pump stroke angle based on the swashplate position. Interfacing with the angle sensor is achieved through a 4-pin DEUTSCH DTM04-4P receptacle attached to a flexible connection cable (for a mating connector, use DEUTSCH plug DTM06-4S). The sensor is mounted to the pump within an aluminum housing to prevent magnetic interference. ### Location When the input shaft with the control is on the top side, the angle sensor will be viewed on the right-hand side. This convention is true for both clockwise and counterclockwise rotation. © Danfoss | December 2021 ## **Angle sensor characteristics** The angle sensor package incorporates two sensor signals (primary & secondary) within a single sensor housing. This package allows for improved accuracy and troubleshooting. ### **Angle sensor electrical specifications** | Description | Minimum | Typical | Maximum | Unit | Note | |--|-----------|----------|-----------|---------|--| | Supply (V+) | 4.75 | 5 | 5.25 | Vdc | Sensor is ratiometric in the voltage range | | Supply protection | - | - | 28 | Vdc | Sensor will switch off above 5.5 V | | Supply current drawn | - | 22 | 25 | mA | Sensor supply at 5 V | | Output short circuit current (VDD to SIG ½ and GND to SIG ½) | - | - | 7.5 | mA | Additional 7.5 mA for each sensor signal, total sensor 7.5x2+22=37 mA typical for FSO | | Resolution | - | 0.03 | - | Degree | 11 bit output channel | | Hysteresis | - | - | - | - | Design of sensor eliminates any mechanical hysteresis | | Environment temperature range | -40 [-40] | 80 [176] | 104 [220] | °C [°F] | If temperature limits are exceeded, the sensor will function at a reduced level of performance | | Operating temperature range | 20 [68] | 50 [122] | 104 [220] | °C [°F] |
Temperature of oil | | Storage temperature | -40 [-40] | - | 125 [257] | °C [°F] | - | | Refresh rate of the sensor | - | - | 100 | μs | Internal ADC refresh rate | ### **Angle sensor calibration** A 2-point calibration of the sensor is recommended, with points measured at pump standby and maximum pump stroke. Maximum pump stroke can be achieved when the pump input shaft is not being turned, as D1P pumps are biased to maximum displacement. In some cases, the pump may need to be turned momentarily to ensure the pump is in the maximum displacement position; this can be achieved through a momentary switching of the engine starter on/off. For minimum displacement calibration, the angle sensor can be calibrated by sending the pump to a standby condition, either high-pressure with a pressure compensator (PC control) or low-pressure with a flow compensator (LS control). Low-pressure standby is recommended if the control has load sensing or remote PC functionality. For best results, it is recommended to rotate the prime mover at the highest operating speed to achieve the lowest angle possible at standby conditions. © Danfoss | December 2021 BC157786485289en-000501 | 13 ## **Angle sensor functionality** The D1P angle sensor option is intended for advanced functionality such as electronic torque limiting, duty cycle measurement, troubleshooting, etc. The angle sensor is PLUS+1* compliant with an available hardware compliance block. Angle Sensor Intended Functionality: - Electronic Torque Limiting* - Duty Cycle Recording - Troubleshooting Angle Sensor Unsupported Functionality: • Displacement/Flow Control 14 | © Danfoss | December 2021 ^{*} Pre-programmed Electronic Torque Limiting control packages are currently not offered for D1P. ### D1P model code The below illustration and the following sections describe how to identify parts of the model code and availability of certain part options based on frame size. Example model code; D1P 260 shown © Danfoss | December 2021 ## D1P 130-260 displacement, rotation and product version ### Displacement | Code | Description | 130 | 145 | 193 | 260 | |------|---|-----|-----|-----|-----| | 130 | 130 cm ³ [7.93 in ³] max. displacement per revolution | • | | | | | 145 | 145 cm ³ [8.85 in ³] max. displacement per revolution | | • | | | | 193 | 193 cm ³ [11.78 in ³] max. displacement per revolution | | | • | | | 260 | 260 cm ³ [15.87 in ³] max. displacement per revolution | | | | • | ### Rotation | Code | Description | 130 | 145 | 193 | 260 | |------|-------------------------|-----|-----|-----|-----| | R | Clockwise [CW] | • | • | • | • | | L | Counter Clockwise [CCW] | • | • | • | • | ### **Product Version** | Code | Description | 130 | 145 | 193 | 260 | |------|-------------|-----|-----|-----|-----| | Α | | • | • | • | • | ### D1P 130-260 control types | Code | Description | 130 | 145 | 193 | 260 | |------|---|-----|-----|-----|-----| | NPNN | Pressure Compensated Control | • | • | • | • | | NPSN | Pressure Compensated Control + Load Sensing Control | • | • | • | • | | NPNR | Pressure Compensated Control + Remote Pressure Compensated Control | • | • | • | • | | TPSN | Power Control + Pressure Compensated Control + Load Sensing Control | • | • | • | • | | NNES | Positive Electric Displacement Control (24V DEUTSCH, 2-pin) w/Manual Override + Load Sensing Control | • | • | • | • | | TPE2 | Power Control + Pressure Compensated Control + Positive Electric Displacement Control (24V DEUTSCH, 2-pin) w/Manual Override | | | • | • | | TPE5 | Power Control + Pressure Compensated Control + Positive Electric Displacement Control (24V DEUTSCH, 2-pin) w/Manual Override (The control outline and size is the same as the 193/260 TPE2 control) | • | • | | | | NPE2 | Pressure Compensated Control + Positive Electric Displacement Control (24V DEUTSCH, 2-pin) w/Manual Override | • | • | • | • | | NPE0 | Pressure Compensated Control + Positive Electric Displacement Control (24V DEUTSCH, 2-pin) w/Manual Override w/o Shuttle valve | • | • | • | • | ### Control Code Explanation: - First digit: Power control (Torque control), "N" means no power control. - Second digit: Pressure compensated control, "N" means no pressure compensated control. - Third & Fourth digits: Proportional displacement control or Load sensing control, "NN" means no control in either category. # **M** Warning A relief valve is required to be installed in the pump outlet for additional system protection. Failure to install the relief valve can lead to system damage and/or injury. # D1P 130-260 input shaft options | Code | Description | 130 | 145 | 193 | 260 | |------|--|-----|-----|-----|-----| | Т | 130/145/193: Spline, DIN 5480 W50 x 2 x 30 x 24 x 9g;
260: Spline, DIN 5480 W60 x 2 x 30 x 28 x 9g;
Shaft Seal Material: FKM | • | • | • | • | | S | Spline, SAE J744 1 3/4in, 13T 8/16 DP;
Shaft Seal Material: FKM | • | • | • | • | | А | 193: Spline, SAE J744 2in, 15T 8/16 DP;
260: Spline, SAE J744 2 1/4in, 17T 8/16 DP;
Shaft Seal Material: FKM | | | • | • | | Р | Straight Keyed DIN 6885,
130/145: AS14 x 9 x 80
193: AS16 x 10 x 100
260: AS18 x 11 x 100
Shaft Seal Material: FKM | • | • | • | • | | K* | SAE J744 (D/E) 3in straight keyed shaft 0.4375x3.000in | | | • | • | ^{*} There is no impeller option for sizes 130 and 145 with this shaft. # D1P 130-260 mounting flange options | Code | Description | 130 | 145 | 193 | 260 | |------|--------------------|-----|-----|-----|-----| | D4 | SAE J744 152-4 (D) | • | • | | | | E4 | SAE J744 165-4 (E) | | | • | • | # D1P 130-260 end cap and main port options # End cap and main ports | Code | Description | Rotation | 130 | 145 | 193 | 260 | |------|--|-------------------|-----|-----|-----|-----| | N1 | Radial, side, flange ports
Inlet: 3in port, M16 x 2;
Outlet: 1in port, M12 x 1.75 SAE J518 without impeller | CW [R]
CCW [L] | • | • | | | | N2 | Radial, side, flange ports Inlet: 3 1/2in, M16 x 12; Outlet: 1 1/2in, M16 x 2 SAE J518 Without impeller | CW [R] | | | • | | | Y1 | Radial, side, flange ports Inlet: 3in port, M16 x 2; Outlet: 1 1/4in port, M14 x 2 SAE J518 With impeller | CW [R]
CCW [L] | • | • | | | | Y2 | Radial, side, flange ports Inlet: 3 1/2in port, M16 x 2; Outlet: 1 1/2in port, M16 x 2 SAE J518 With impeller | CW [R]
CCW [L] | | | • | | | Y3 | Radial, side, flange ports
Inlet: 4in port, M16 x 2;
Outlet: 1 1/2in port, M16 x 2 SAE J518
With impeller | CW [R]
CCW [L] | | | | • | © Danfoss | December 2021 BC157786485289en-000501 | 17 ## D1P 130-260 auxiliary mounting flange options Auxiliary mounting flange (through-drive flange) | Code | Description | 130 | 145 | 193 | 260 | |------|---|-----|-----|-----|-----| | NN | No auxiliary flange | • | • | • | • | | A1 | SAE J744 82-2 (A); Spline coupling: 5/8in 9T 16/32DP | • | • | • | • | | A2 | SAE J744 82-2 (A); Spline coupling: 3/4in 11T 16/32DP | • | • | | | | A3 | SAE J744 82-2 (A); Spline coupling: 7/8in 13T 16/32DP | | | • | • | | B1 | SAE J744 101-2 (B); Spline coupling: 7/8in 13T 16/32DP | • | • | • | • | | B2 | SAE J744 101-2 (B); Spline coupling: 1in 15T 16/32DP | • | • | • | • | | ВА | SAE J744 101-2 (B); Spline coupling: 7/8in 13T 16/32DP; Adapter 90° | • | • | • | • | | ВВ | SAE J744 101-2 (B); Spline coupling: 7/8in 13T 16/32DP; Cover 45° | | | • | • | | C5 | SAE J744 127-2&4 (C) ; Spline coupling:1 1/4in 14T 12/24DP | • | • | • | • | | C9 | SAE J744 127-2&4 (C); Spline coupling: 1 3/4in 13T 8/16DP | | | • | • | | D2 | SAE J744 152-4 (D); Spline coupling: 1 3/4in 13T 8/16DP | • | • | • | • | | D5 | SAE J744 152-4 (D) ; Spline coupling: N50x2x30x24x9H | • | • | • | • | | E2 | SAE J744 165-4 (E) ; Spline coupling: N50 x 2 x 30 x 24 x 9H | | | • | • | | E3 | SAE J744 165-4 (E); Spline coupling: N60 x 2 x 30 x 28 x 9H | | | | • | ### D1P 130-260 power control settings Power control setting at 1500rpm (kW), "3 digit code" | Code ¹ | Description | 130 | 145 | 193 | 260 | |-------------------|--|-----|-----|-----|-----| | NNN | No Power Control | • | • | • | • | | XXX | xxx kW between ranges specified below (For example: Code "090" means 90kW) at 1500 rpm | | | | | | 030-115 | 30-115 kW [40-154 hp] at 1500 rpm ² | • | • | | | | 035-155 | 35-155 kW [47-208 hp] at 1500 rpm ² | | | • | | | 040-210 | 40-210 kW [54-282 hp] at 1500 rpm ² | | | | • | ¹ For settings out of these ranges, please contact Danfoss Power Solutions. If the speed is not 1500rpm, please make a conversion using the following formula, assuming constant torque: $$P_{setting@1500 \text{ rpm}} = P_{actual} * \frac{1500}{n_{actual}}$$ ## For example: If actual power is 110 kW at 2100 rpm, the conversion to obtain the power control setting at 1500 rpm should be 110*1500/2100=79, choose 080 option (round to closest 5 kW increment option). ² Only increments of 5kW [6.7 hp] are allowed. E.g. 035, 040, 045, etc.) #### **Model Code** # D1P 130-260 pressure compensated control setting Pressure compensated control setting (bar), "3 digit code" | Code* | Description | | 145 | 193 | 260 | |---------|---|--|-----|-----|-----| | NNN | No Pressure compensated control | | • | • | • | | XXX | xxx bar between the range specified below (For example:
Code "320" means 320 bar [4641 psi]) | | | | | | 150~350 | 50~350 lar [2176~5076 psi] (Please select pressure compensated control setting in increments of 10 bar [145 psi]. E.g. 150 or 160 or 170, etc.) | | • | • | • | ^{*} For settings out of these ranges, please contact Danfoss Power Solutions. ## D1P 130-260 load sensing control settings L - Load Sensing Control Setting (bar), "2 digit code" | Code | Description | | 145 | 193 | 260 | |--------|---|---|-----|-----|-----| | NN | No load sensing control | | • | • | • | | XX | xx bar between the range specified below (For example: Code "25" means 25 bar [363 psi]) | | | | | | 10~35* | 10~35 bar [145~508 psi] (Please select load sensing control setting in increments of 1 bar [14.5 psi]. E.g. 10 or 11 or 12, etc.) | • | • | • | • | ^{*} For settings out of these ranges, please contact Danfoss Power Solutions. Range allowed for NPNR (Pressure compensated + Remote Pressure compensated control) is 15-35 bar #### D1P 130-260 hydraulic displacement control setting Hydraulic displacement control start pressure setting, "2 digit code" | Code | Description | 130 | 145 | 193 | 260 | |-------|-----------------------------------|-----|-----|-----|-----| | NN | No hydraulic displacement control | • | • | • | • | | 04-10 | 4-10 bar | | | • | • | #### D1P 130-260 maximum displacement settings Maximum displacement setting, "2 digit code" | Co | ode | Description | | 145 | 193 | 260 | |----|---|-----------------------|---|-----|-----|-----| | | FS | Factory setting: 100% | • | • | • | • | | | XX ¹ XX% of maximum displacement (For example: Code "90" means 90% of maximum displacement) ² | | • | • | • | • | ¹ Please consider frame sizing and increments when selecting a maximum displacement setting (see *displacement limiter* for more information). #### D1P 130-260 minimum displacement settings Minimum displacement setting, "2 digit code" | Code | Description | 130 | 145 | 193 | 260 | |------|--|-----|-----|-----|-----| | FS | 0% of maximum displacement limit setting | • | • | • | • | | XX | XX% of maximum displacement limit setting ¹ | • | • | • | • | ¹ Only increments of 5% are allowed. (E.g. 05, 10, etc.) ² Only increments of 5% are allowed. (E.g. 70, 75, 80 etc.) ## **Model Code** If a different minimum displacement setting is required, please contact Danfoss Power Solutions. # D1P 130-260 special hardware and special features ## Special hardware | Code | Description | 130 | 145 | 193 | 260 | |------|--|-----|-----|-----|-----| | NNN | None | • | • | • | • | | NNA | No special hardware; with angle sensor | | | | • | ## Special features | Code | Description | 130 | 145 | 193 | 260 | |------|---|-----|-----|-----|-----| | NNN | Factory Setting (Paint-black, tag, Danfoss, format A) | • | • | • | • | | NXN | Factory Setting (No paint, tag, Danfoss, format A, w/o filter) | • | • | • | • | | NNF | Factory Setting (Paint-black, tag, Danfoss, format A) with control oil filter | | | | • | #### **Model Code** # D1P tandem pump information Information about tandem pump direction and ordering instructions are found below. #### **Pump direction** When assembling a system the first pump is always to be considered at 0° INDEX as shown below. Auxiliary pump INDEX = 270° Auxiliary pump INDEX = 180° For gear pump tandem angle information, please contact Danfoss Power Solutions. #### **Ordering tandem pumps** When ordering tandem pumps, the type designations of the 1st and 2nd pumps must be connected by a "+", and tandem pump angle should be given as indicated below. Ordering example: D1P193RATPE2TE4Y2E2090320NNNNFSFSNNNNNN + D1P193RATPE2TE4Y2NN090320NNNNFSFSNNNNNN Tandem angle 0° + 180° #### **D1P** pressure overview MaximumThe highest recommended outlet (application). Operating at or below this pressureworkingshould yield satisfactory product life. For all applications, the load should move belowpressurethis pressure. This corresponds to the maximum allowable pressure compensated control setting. **Maximum** The highest intermittent (t<1s) outlet pressure allowed. Maximum machine load (peak) pressure should never exceed this pressure, and pressure overshoots should not exceed this pressure. **Inlet pressure** The absolute pressure in the pump suction port, it is related to pump speed. Make sure it is in the allowable range, see *D1 pump specifications*. **Case pressure** The case pressure at the ports L1 and L2 may be a maximum of 1.2 bar [17.4 psi] higher than the inlet pressure at the port S but not higher than 2 bar. Size drain plumbing accordingly and connect it to tank directly. The housing must always be filled with hydraulic fluid. #### D1P speed overview **Rated** The fastest recommended operating speed at full displacement and at least 0.6 bar [8.7 speed psi] abs with charge pump (0.8 bar [11.6 psi] abs without charge pump) inlet pressure. Operating at or below this speed should yield satisfactory product life. Maximum speed The highest recommended operating speed at full power conditions. Operating at or beyond maximum speed requires positive inlet pressure and/or a reduction of pump outlet flow. Refer to the *Inlet pressure vs. speed* chart below. Inlet pressure vs. speed **Minimum** The lowest operating speed allowed. Operating below this speed will not yield satisfactory performance. Caution! Threat to pump life! Working outside of the pump's operating parameters may result in shortened life expectancy of the pump. Always work within the operating conditions of the pump application. With accurate duty cycle information, your Danfoss Power Solutions representative can assist you in calculating expected pump life. ## Performance ## D1P input power Input power requirements depend on displacement per revolution, speed, efficiency, and operating pressure. 130cc power vs input speed # 145cc power vs input speed # 193cc power vs input speed # 260cc power vs input speed # D1P output flow Output flow depends on displacement per revolution, speed, and efficiency. 130cc flow vs speed # 145cc flow vs speed # 193cc flow vs speed ## 260cc flow vs speed #### D1P efficiency overview Efficiency data depends on various operating parameters such as: working and inlet pressure, operating temperature, displacement, and fluid viscosity. For an accurate efficiency calculation, please contact your Danfoss Power Solutions representative. All performance data are theoretical values, without efficiency or tolerances. Data valid at full displacement and operation parameters within the recommended ranges. #### D1P fluid overview Ratings and performance data for D1 pumps are based on operating with premium hydraulic fluids containing oxidation, rust, and foam inhibitors. These include premium turbine oils, API CD engine oils per SAE J183, M2C33F or G automatic transmission fluids (ATF), Dexron II (ATF) meeting Allison C-3 or Caterpillar T0-2 requirements, and certain specialty agricultural tractor fluids. For more information on hydraulic fluid selection, see Danfoss Power Solutions publications **BC152886484524** Hydraulic Fluids and Lubricants, Technical Information, and **520L0465** Experience with Biodegradable Hydraulic Fluids, Technical Information. #### **D1P viscosity** Minimum Viscosity This should only occur during brief occasions of maximum ambient temperature and severe duty cycle operation. **Maximum** This should only occur at cold start. Pump performance will be reduced. Limit **Viscosity** speeds until the system warms up. Maintain fluid viscosity within the recommended range for maximum efficiency and pump life. #### D1P temperature overview **Minimum**Relates to the physical properties of the component materials. Cold oil will not **Temperature**affect the durability of the pump components. However, it may affect the ability of the pump to provide flow and transmit power Maximum Relates to material properties. Don't exceed it. Measure maximum temperature at **Temperature** the hottest point in the system. This is usually the case drain. #### D1P fluid velocity Choose piping sizes and configurations sufficient to maintain optimum fluid velocity, and minimize pressure drops. This reduces noise, pressure drops, overheating and maximizes system life and performance. #### Recommended fluid velocities | System lines | 6 to 9 m/sec | |--------------|--------------| | Suction line | 1 to 2 m/sec | | Case drain | 3 to 5 m/sec | Typical guidelines; obey all pressure ratings. ## **Velocity equations** #### SI units Q = flow (I/min) $A = area (mm^2)$ $Velocity = (16.67 \cdot Q)/A (m/sec)$ #### D1P shaft torque ratings Shaft drawings and maximum torque ratings are found in these sections: - Size 130/145 shaft specifications - Size 193 shaft specifications - Size 260 shaft specifications Maximum torque ratings are based on shaft strength with no radial force; do not exceed the torque limits. #### D1P shaft load Series D1 pump bearing is capable of accepting external radial and thrust (axial) loads. The external radial shaft load limits are a function of the load position, orientation, and the operating conditions of the pump. The maximum allowable radial load (R_e) is based on the maximum external moment (M_e) and the distance (L) from the mounting flange to the load. Compute radial loads using the formula below. *D1* pump specifications gives maximum external radial load (R_e) and thrust (axial) load (T_{in} , T_{out}) limits . $M_e = R_e \cdot L$ $L = Distance from mounting flange to point of load <math>M_e = Maximum \ external \ moment$ $R_e = Maximum \ radial \ side \ load$ All
shaft loads affect bearing life. In applications where external shaft loads cannot be avoided, maximize bearing life by orienting the load between the 150° and 210° positions, as shown. # D1P mounting flange loads Adding auxiliary pumps and/or subjecting pumps to high shock loads may overload the pump mounting flange. *D1 pump specifications* gives allowable continuous and shock load moments. Applications with loads outside allowable limits require additional pump support. - Shock load moment (M_S) is the result of an instantaneous jolt to the system. - **Continuous load moments** (M_C) are generated by the typical vibratory movement of the application. #### D1P auxiliary mounting pads Auxiliary mounting pads are available. Since the auxiliary pad operates under case pressure, use an Oring to seal the auxiliary pump mounting flange to the pad. Oil from the main pump case lubricates the drive coupling. - The combination of auxiliary shaft torque and main pump torque must not exceed the maximum pump input shaft rating. Shaft drawing section in Installation drawings chapter gives input shaft torque ratings. - Applications subject to severe vibratory or shock loading may require additional support to prevent mounting flange damage. The table gives allowable continuous and shock load moments. #### D1P estimating overhung load moments Use the equations below to estimate the overhung load moments for multiple pump mounting. See Installation drawings chapter to find the distance from the mounting flange to the center of gravity. Refer to the to find pump weight. Overhung load example - 1. Mounting Flange - 2. Center of Gravity (CG), Pump 1 - 3. Center of Gravity (CG), Pump 2 - Shock load formula $M_S = G_S \cdot K \cdot (W_1 \cdot L_1 + W_2 \cdot L_2 + ... \cdot W_n \cdot L_n)$ - Continuous load formula $M_C = G_{C^{\bullet}}K_{\bullet}(W_1 \bullet L_1 + W_2 \bullet L_2 + ... W_n \bullet L_n)$ #### SI units M_S = Shock load moment (N•m) M_C = Continuous (vibratory) load moment (N•m) G_S = Acceleration due to external shock (G's) G_C = Acceleration due to continuous vibration (G's) K = Conversion factor = 0.00981 $W_n = Mass of n^{th} pump (kg)$ L_n = Distance from mounting flange to n^{th} pump CG (mm) #### Understanding and minimizing system noise Noise is transmitted in fluid power systems in two ways: as fluid borne noise, and structure borne noise. **Fluid-borne noise** (pressure ripple or pulsation) is created as pumping elements discharge oil into the pump outlet. It is affected by the compressibility of the oil, and the pump's ability to transition pumping elements from high to low pressure. Pulsations travel through the hydraulic lines at the speed of sound until there is a change (such as an elbow) in the line. Amplitude varies with overall line length and position. **Structure borne noise** is transmitted wherever the pump casing connects to the rest of the system. The way system components respond to excitation depends on their size, form, material, and mounting. System lines and pump mounting can amplify pump noise. #### Follow these suggestions to help minimize noise in your application: - Use flexible hoses. - Limit system line length. - If possible, optimize system line position to minimize noise. - If you must use steel plumbing, clamp the lines. - If you add additional support, use rubber mounts. - Test for resonance in the operating range; if possible avoid them. #### **D1P** installation Series D1 pumps may be installed in any position. To optimize inlet conditions, install the pump at an elevation below the minimum reservoir fluid level. Design inlet plumbing to maintain inlet pressure within prescribed limits (see Inlet pressure limits on D1 pump specifications) Fill the pump housing and inlet line with clean fluid during installation. Connect the case drain line to the uppermost drain port (L1, L2 or L3) to keep the housing full during operation. To allow unrestricted flow to the reservoir, use a dedicated drain line. Connect it below the minimum reservoir fluid level and as far away from the reservoir outlet as possible. Use plumbing adequate to maintain case pressure within prescribed limits (see case pressure limits on *D1 pump specifications*). #### **D1P filtration** To prevent damage to the pump, including premature wear, fluid entering the pump inlet must be free of contaminants. Series D1 pumps require system filtration capable of maintaining fluid cleanliness at class 20/18/15 according to ISO 4406-1999 or better. Danfoss Power Solutions does not recommend suction line filtration. Suction line filtration can cause high inlet vacuum, which limits pump operating speed. Instead we recommend a 125 μ m (150 mesh) screen in the reservoir covering the pump inlet. This protects the pump from coarse particle ingestion. Return line filtration is the preferred method for open circuit systems. Consider these factors when selecting a system filter: - Cleanliness specifications - Contaminant ingression rates - Flow capacity - Desired maintenance interval Typically, a filter with a beta ratio of $\beta 10 = 10$ is adequate. However, because each system is unique, only a thorough testing and evaluation program can fully validate the filtration system. For more information, see Danfoss Power Solutions publication **BC152886482150** Design Guidelines for Hydraulic Fluid Cleanliness. #### Reservoir The reservoir provides clean fluid, dissipates heat, and removes entrained air from the hydraulic fluid. It allows for fluid volume changes associated with fluid expansion and cylinder differential volumes. Minimum reservoir capacity depends on the volume needed to perform these functions. Typically, a capacity of one to three times the pump flow (per minute) is satisfactory. Locate the reservoir outlet (suction line) near the bottom, allowing clearance for settling foreign particles. Place the reservoir inlet (return lines) below the lowest expected fluid level, as far away from the outlet as possible. ## **Sizing Equations** Use these equations to help choose the right pump size and displacement for your application. | | Based on SI units | | | Based on US units | | |--------|-------------------|---|---------|-------------------|---| | Flow | Output flow Q = | $\frac{V_g \bullet n \bullet \eta_v}{1000}$ | (l/min) | Output flow Q = | $\frac{V_{\rm g} \bullet n \bullet \eta_{\rm v}}{231} \text{ (US gal/min)}$ | | Torque | Input torque M= | V _g • Δp | (N•m) | Input torque M= | $\frac{V_g \cdot \Delta p}{2 \cdot \pi \cdot n} \qquad \text{(Ibf-in)}$ | Power Input power P = $$\frac{\mathbf{M} \cdot \mathbf{n} \cdot \mathbf{\pi}}{30\ 000} = \frac{\mathbf{Q} \cdot \Delta \mathbf{p}}{600 \cdot \mathbf{\eta}_{1}}$$ (kW) Input power P = $\frac{\mathbf{M} \cdot \mathbf{n} \cdot \mathbf{\pi}}{198\ 000} = \frac{\mathbf{Q} \cdot \Delta \mathbf{p}}{1714 \cdot \mathbf{\eta}_{1}}$ (hp) #### **Variables** SI units [US units] V_{α} = Displacement per revolution cm³/rev [in³/rev] **Po** = Outlet pressure bar [psi] **P**_i = Inlet pressure bar [psi] $\Delta p = p_0 - p_i$ (system pressure) bar [psi] \mathbf{n} = Speed min⁻¹ (rpm) η_{v} = Volumetric efficiency η_m = Mechanical efficiency η_t = Overall efficiency $(\eta_v \cdot \eta_m)$ #### **NPNN (Pressure Compensated Control)** #### D1P 130/145/193/260+NPNN ## **Pressure Compensated Control (P) Principle** The P control design maintains a constant pressure in the hydraulic circuit as flow varies. The P control modulates pump flow accordingly to maintain system pressure at the P setting as the P adjusting screw and spring defines. #### **Pressure Compensated Control (P) Operation** When system pressure, acting on the non-spring end of the P spool, overcomes the force of the P spring, the spool shifts porting system pressure to the servo piston and the swashplate angle decreases. When system pressure drops below the P setting, the P spring shifts the spool in the opposite direction connecting the servo piston to pump case and the swashplate angle increases. The swashplate is maintained at whatever angle is required to keep system pressure at the P setting. #### P characteristic #### Λ #### Warning A relief valve is required to be installed in the pump outlet for additional system protection. Failure to install the relief valve can lead to system damage and/or injury. # Response/Recovery | Pressure Compensated (PC) Control Response/Recovery Times* @80°C, 350 bar, 1500rpm | | | | | |--|-----------------|-----------------|--|--| | Frame Size | Response (msec) | Recovery (msec) | | | | 130cc | 150 | 270 | | | | 145cc | 150 | 270 | | | | 193cc ¹ | 280 | 500 | | | | 260cc | 154 | 327 | | | ¹ Tested at 1800rpm Values may vary depending on application conditions. For more information, please contact Danfoss Power Solutions. #### NPSN (Pressure Compensated Control + Load Sensing Control) ## Pressure Compensated Control (P) Principle and Operation Please refer to NPNN (Pressure Compensated Control) on page 32 #### **Load Sensing Control (S) Principle** The S control design matches pump flow with system demand. The S control senses the flow demand of the system as a pressure drop across the external control valve (1). As (1) opens and closes, the pressure difference (delta) across the valve changes. When opening, the delta decreases. When closing, the delta increases. The S control then increases or decreases pump flow to the system until the pressure delta becomes equal to the S setting as defined by the S adjusting screw and spring. # **Load Sensing Control (S) Operation** Through internal porting, system pressure [upstream of (1)] is applied to the non-spring end of the S spool, and through hydraulic line connected at port X, load pressure
[downstream of (1)] is applied to the spring end. This arrangement allows the S spool to act on the delta between system pressure and load pressure. The S spring sets the threshold of operation (S setting). Because the swashplate is biased to maximum angle, the pump attempts to deliver full flow to the hydraulic system. When the flow being delivered exceeds demand, the pressure delta across the (1) is great enough to overcome spring force and shift the S spool porting system pressure to the servo piston. The pump de-strokes reducing flow until the delta across the (1) becomes equal to the S setting. When flow being delivered is less than demand, the delta across the (1) drops below the S setting and the S spring shifts the spool connecting the servo piston to pump case. The pump strokes increasing flow until the delta across the (1) becomes equal to the S setting. When the external control valve (1) is placed in neutral, it connects the LS signal line to drain. With no LS pressure acting on the non-spring end of the LS spool, the pump adjusts stroke to whatever position necessary to maintain system pressure at the LS setting. The pump is now in low pressure standby mode. (1) is not in the scope of supply. ## S characteristic # **A** Warning A relief valve is required to be installed in the pump outlet for additional system protection. Failure to install the relief valve can lead to system damage and/or injury. # **NPSN Priority** The Pressure Compensated Control (P) has priority over the Load Sensing Control (S). #### Response/Recovery | Load Sensing (LS) Response/Recovery Times @80°C, 1500rpm, LS Setting at 25 bar | | | | | |--|-----------------|-----------------|--|--| | Frame Size | Response (msec) | Recovery (msec) | | | | 130cc | 260 | 360 | | | | 145cc | 260 | 360 | | | | 193cc ¹ | 233 | 264 | | | | 260cc | 309 | 327 | | | ¹ Tested with a LS setting of 20bar Values may vary depending on application conditions. For more information, please contact Danfoss **Power Solutions** #### NPNR (Pressure Compensated Control + Remote Pressure Compensated Control) #### Pressure Compensated Control (P) Principle and Operation Please refer to NPNN (Pressure Compensated Control) on page 32. #### Remote Pressure Compensated Control (R) Principle The remote PC control is a two-stage control that allows multiple PC settings. Remote PC controls are commonly used in applications requiring low and high pressure PC operation. For this control, Danfoss recommends a load sense setting of 25 bar. #### Remote Pressure Compensated Control (R) Operation The remote PC control uses a pilot line connected to an external hydraulic valve. The external valve changes pressure in the pilot line, causing the PC control to operate at a lower pressure. When the pilot line is vented to reservoir, the pump maintains pressure at the load sense setting. When pilot flow is blocked, the pump maintains pressure at the PC setting. An on-off solenoid valve can be used in the pilot line to create a low-pressure standby mode. A proportional solenoid valve, coupled with a microprocessor control, can produce an infinite range of operating pressures between the low pressure standby setting and the PC setting. ## R characteristic # **M** Warning A relief valve is required to be installed in the pump outlet for additional system protection. Failure to install the relief valve can lead to system damage and/or injury. #### **NPNR Priority** When the pump's X-port is vented to tank, or limited to some pressure setting via a remote valve, the remote pressure compensator function will control the maximum outlet pressure of the pump. If the pump's outlet pressure reaches the pressure setting of the pressure compensator (PC) function, the PC function will take priority and limit the pump's maximum pressure. #### TPSN (Power Control + Pressure Compensated Control + Load Sensing Control) #### **Power Control (T) Principle** The power control regulates the displacement of the pump depending on the working pressure so that a given drive power is not exceeded at constant drive speed, this function can prevent engine stall or protect electric generator. $$P_{B} = \text{working pressure}$$ $$P_{B} \bullet V_{g} = C$$ $$V_{g} = \text{displacement}$$ $$C = \text{constant}$$ The precise control with a hyperbolic control characteristic, provides an optimum utilization of available power. ## **Power Control (T) Operation** The working pressure acts on a rack-pivot via a roller jack which produces a rotating torque, an externally adjustable spring force counteracts this which determines the power setting. If the moment generated by working pressure exceeds the moment generated by spring force, the control valve is actuated by the rack-pivot, and pump reduces displacement. The lever length at the rack-pivot is shortened and the working pressure can increase at the same rate as the displacement decreases without the drive powers being exceeded. $$(P_B \cdot V_g = C).$$ The hydraulic output power (characteristic T) is influenced by the efficiency of the pump. ## T characteristic ## Pressure Compensated Control (P) Principle and Operation Please refer to NPNN (Pressure Compensated Control) on page 32 # Load Sensing Control (S) Principle and Operation Please refer to NPSN (Pressure Compensated Control + Load Sensing Control) on page 34 ## **TPSN Priority** The Pressure Compensated Control (P) has priority over the Power Control (T), Power Control has priority over Load Sensing Control (S). #### NNES (Electric Displacement Control + Load Sensing Control) #### **Electric Displacement Control (E) Principle** The electric displacement control uses an electric proportional solenoid valve to vary the pump's displacement from minimum displacement to maximum displacement or from maximum displacement to minimum displacement. The swashplate angle (pump displacement) is proportional to the electrical input signal (control current). #### **Electric Displacement Control (E) Operation** This control is current driven, requiring a Pulse Width Modulated (PWM) signal. Pulse width modulation allows more precise control of current to the solenoid. The PWM signal causes the solenoid pin to push against the E spool, which depressurizes the end of servo piston, the swashplate angle increases under the force of the bias piston A swashplate feedback link provides swashplate position force to the solenoid through the E spool's linear spring. The control reaches equilibrium when the position of the swashplate spring feedback force exactly balances the input command solenoid force from the operator. As working pressure changes with load, the control and servo/swashplate system work constantly to maintain the commanded position of the swashplate. #### **Electric Displacement Control (E) Operating Instruction** To make sure the electric displacement control works properly, a minimum control pressure of 30 bar [435 psi] is required. The required control pressure is taken either from the working pressure, or from the externally applied control pressure at the E port. If you can't make sure that the working pressure is above 30 bar all the time, then a minimum of 30bar [435 psi] pressure supply at the E port is mandatory in order to control the displacement of the pump at all times. This pressure supply can be provided from different sources, such as an additional small gear or piston pump and a relief valve, or an accumulator. If E port is not connected, remove the shuttle valve # Typical operating curve ## Hysteresis | EDC Hysteresis ¹ | | | |-------------------------------------|-------|--| | Input hysteresis | <4.5% | | | Output hysteresis @50% displacement | <4.0% | | ¹ Values may vary depending on application conditions. For more information, please contact Danfoss Power Solutions # Response/Recovery | Response/Recovery Times @ 1500rpm (50°C) ¹ | | | | |---|-----------------|----------|--| | Recovery 0%-100% | 130cc (263 bar) | 260 msec | | | | 145cc (263 bar) | 260 msec | | | | 193cc (160 bar) | 272 msec | | | | 260cc (200 bar) | 370 msec | | | Response 100%-0% | 130cc (263 bar) | 390 msec | | | | 145cc (263 bar) | 390 msec | | | | 193cc (160 bar) | 186 msec | | | | 260cc (200 bar) | 390 msec | | #### MOR Each Electric Displacement Control (EDC) is equipped with a Manual Over Ride (MOR) function for temporary actuation of the control to aid in diagnostics, even if insufficient or no current is supplied to the solenoid actuator. Initial activation of the MOR function will require a higher force to overcome the sticking effect between the pin and O-ring seal. Repeated activation of this functionality should provide better controllability. © Danfoss | December 2021 ## Marning Do not actuate the MOR unless the machine is in a "SAFE" mode. Unintended MOR operation will cause the pump to go into stroke, use only for diagnosis purposes. # **Solenoid Specification** Technical data - Solenoid | Voltage | 24V (±20%) | |---|------------| | Start current at Vg min. | 200 mA | | End Current at Vg max. | 600 mA | | Maximum current | 770 mA | | Coil Resistance @ 20 °C [70 °F] | 22.7 Ω | | PWM Range | 70~200 Hz | | PWM Frequency (preferred)* | 100 Hz | | IP Rating (IEC 60 529) + DIN 40 050, part 9 | IP 67 | | IP Rating (IEC 60 529) + DIN 40 050, part 9 with mating connector | IP 69K | ^{*} PWM signal required for optimum control performance # Mating connector for Solenoid | Description | Ordering Number | Quantity | | | |---|------------------------|----------|--|--| | Mating Connector | DEUTSCH DT06-2S | 1 | | | | Wedge Lock | DEUTSCH W2S | 1 | | | | Socket contact (16 and 18 AWG) | DEUTSCH 0462-201-16141 | 2 | | | | Danfoss
mating connector kit K29657 1 | | | | | | The mating connector is not included in the delivery contents, this can be delivered by Danfoss on request. | | | | | Plug polarity is not necessary (Ex. either pin 1 or pin 2 can be used as positive). ## Compatible PLUS+1° controllers(see below): | MC012 | Al152986480902 | |-------|----------------| | MC024 | Al152986480953 | | MC038 | Al152886480992 | 42 | © Danfoss | December 2021 | MC050 | Al152986480864 | |-------|----------------| | MC088 | Al152886480776 | For further information: please visit: http://www.danfoss.com/Products/MobileElectronics/index.htm #### **Standard EDC Valve** The position of the connector can be changed by turning the solenoid body. Proceed as follows: - 1. Loosen protection cap (1). - 2. Loosen lock nut (2). - 3. Turn the solenoid body (3) to the desired position. - 4. Tighten the lock nut (2). - **5.** Tighten the protection cap (1). Tightening Torque of lock nut: 5 ± 1 N•m [44.25 \pm 8.85 lbf•in] #### Standard EDC Valve | A - Actuation Forces | | | |-----------------------------------|-----------------------|--| | Breakaway Force (First actuation) | 45 N [10.12 lbf] max. | | | Repeat of Actuation | 25 N [5.62 lbf] max. | | # **NNES Priority** Both the Electric Displacement Control (EDC) and the Load Sensing Control (LS) are used to control the pump's displacement. The pump will output the smallest displacement when both control functions are given control instruct. © Danfoss | December 2021 # TPE2/TPE5 (Power Control + Pressure Compensated Control + Electric Displacement Control) #### **Power Control (T) Principle and Operation** Please refer to TPSN (Power Control + Pressure Compensated Control + Load Sensing Control) on page 38 # Pressure Compensated Control (P) Principle and Operation Please refer to NPNN (Pressure Compensated Control) on page 32 ## Electric Displacement Control (E2/E5) Principle and Operation Please refer to NNES (Electric Displacement Control + Load Sensing Control) on page 40 # **TPE2/TPE5 Priority** The Pressure Compensated Control (P) has priority over the Power Control (T), and the Power Control (T) has priority over Electric Displacement Control (EDC). ## NPE2/NPE0 (Pressure Compensated Control + Electric Displacement Control) #### D1P with NPE2 (left); D1P with NPE0 (right) # Pressure Compensated Control (P) Principle and Operation Please refer to NPNN (Pressure Compensated Control) on page 32. #### Electric Displacement Control (E2/E0) Principle and Operation Please refer to NNES (Electric Displacement Control + Load Sensing Control) on page 40. # **Shuttle Valve/Pilot Supply** Please refer to Electric Displacement Control (E) Operating Instruction section at NNES (Electric Displacement Control + Load Sensing Control) on page 40. To determine if an external control pilot supply is needed, please consult your Danfoss Power Solutions representative. D1P pumps configured with an NPE2 control will come with a shuttle valve installed at the E port. D1P pumps with an NPE0 control will not include the shuttle valve. #### Size 130/145 #### Dimensions (mm) and port descriptions Size 130/145: TPSN w/o Charge Pump Control: TPSN Power Control (T) + Pressure Compensated Control (P) + Load Sensing Control (S) Auxiliary flange: NN (No Auxiliary flange) Charge pump: Without Before finalizing your design, please request a certified drawing. Before finalizing your design, please request a certified drawing. #### **Port Descriptions** | Ports | Description Standard Size ¹⁾ Ma | | Max. pressure (bar [psi]) | State ²⁾ | | |--|--|-----------------|---------------------------|---------------------|---| | В | Outlet port, Fixing thread | SAE J518, DIN13 | 1 in, M12 x 1.75; 18 deep | 400 [5802] | 0 | | S | Suction port, Fixing thread SAE J518, DIN13 3 in, M16 x 2; 24 deep 2 [29] | | 2 [29] | 0 | | | L ₁ , L ₂ , L ₃ | L ₃ Drain port DIN 3852 M26 x 1.5; 14.5, 16, 14 deep 2 [29] | | 2 [29] | X ³⁾ | | | M ₄ | Measurement point, servo-piston chamber DIN 3852 M12 x 1.5; 12.5 deep 400 [5802] | | 400 [5802] | Х | | | M _B | Measurement point, outlet port | DIN 3852 | M12 x 1.5; 12.5 deep | 400 [5802] | Х | | х | LS port | DIN 3852 | M14 x 1.5; 12.5 deep | 400 [5802] | 0 | ¹⁾ For required torque, please refer to *D1P tightening torque* on page 94. $^{^{2)}}$ O = Open, must be connected (closed by plastic plug on delivery) / X = Closed (closed by metal plug on delivery). $^{^{3)}}$ Depending on installation position, one of L₁, L₂ and L₃ must be connected (please refer to Installation Notes). Size 130/145: TPE5 w/o Charge Pump Control: TPE5 Power Control (T) + Pressure Compensated Control (P) + Electric Displacement Control (E5) Auxiliary flange: B1 Charge pump: Without P400422 Before finalizing your design, please request a certified drawing. Before finalizing your design, please request a certified drawing. ## **Port Descriptions** | Ports | Description | Standard | Size ¹⁾ | Max. pressure (bar [psi]) | State ²⁾ | |--|---|-----------------|------------------------------|---------------------------|---------------------| | В | Outlet port, Fixing thread | SAE J518, DIN13 | 1 in, M12 x 1.75; 18 deep | 400 [5802] | 0 | | S | Suction port, Fixing thread | SAE J518, DIN13 | 3 in, M16 x 2; 24 deep | 2 [29] | 0 | | L ₁ , L ₂ , L ₃ | Drain port | DIN 3852 | M26 x 1.5; 14.5, 16, 14 deep | 2 [29] | X ³⁾ | | M ₄ | Measurement point, servo-piston chamber | DIN 3852 | M12 x 1.5; 12.5 deep | 400 [5802] | Х | | M _B | Measurement point, outlet port | DIN 3852 | M12 x 1.5; 12.5 deep | 400 [5802] | Х | | E | External control port | DIN 3852 | M14 x 1.5; 12 deep | 200 [2901] | Х | ¹⁾ For required torque, please refer to *D1P tightening torque* on page 94. $^{^{2)}}$ O = Open, must be connected (closed by plastic plug on delivery) / X = Closed (closed by metal plug on delivery). $^{^{3)}}$ Depending on installation position, one of L₁ ,L₂ and L₃ must be connected (please refer to Installation Notes). Size 130/145: TPSN w/ Charge pump Control: TPSN Power Control (T) + Pressure Compensated Control (P) + Load Sensing Control (S) Auxiliary flange: B1 Charge pump: With Before finalizing your design, please request a certified drawing. Before finalizing your design, please request a certified drawing. ## **Port Descriptions** | Ports | Description | Standard | Size ¹⁾ | Max. pressure (bar [psi]) | State ²⁾ | |--|---|-----------------|------------------------------|---------------------------|---------------------| | В | Outlet port, Fixing thread | SAE J518, DIN13 | 1 ¼ in, M14 x 2; 23 deep | 400 [5802] | 0 | | S | Suction port, Fixing thread SAE J518, DIN13 3 in, M16 x 2; 24 deep 2 [29] | | 2 [29] | 0 | | | L ₁ , L ₂ , L ₃ | Drain port | DIN 3852 | M26 x 1.5; 14.5, 16, 14 deep | 2 [29] | X ³⁾ | | M ₄ | Measurement point, servo-piston chamber DIN 3852 M12 x 1 | | M12 x 1.5; 12.5 deep | 400 [5802] | Х | | M _B | Measurement point, outlet port | DIN 3852 | M12 x 1.5; 12.5 deep | 400 [5802] | Х | | X | LS port DIN | | M14 x 1.5; 12.5 deep | 400 [5802] | Х | ¹⁾ For required torque, please refer to *D1P tightening torque* on page 94. © Danfoss | December 2021 $^{^{2)}}$ O = Open, must be connected (closed by plastic plug on delivery) / X = Closed (closed by metal plug on delivery). $^{^{3)}}$ Depending on installation position, one of L_1 , L_2 and L_3 must be connected (please refer to Installation Notes). Size 130/145: TPE5 w/ Charge Pump Control: TPE5 Power Control (T) + Pressure Compensated Control (P) + Electric Displacement Control (E5) Auxiliary flange: B1 Charge pump: With P400510 Before finalizing your design, please request a certified drawing. Before finalizing your design, please request a certified drawing. ## **Port Descriptions** | Ports | Description | Standard | Size ¹⁾ | Max. pressure (bar [psi]) | State ²⁾ | |--|---|-----------------|------------------------------|---------------------------|---------------------| | В | Outlet port, Fixing thread | SAE J518, DIN13 | 1 ¼ in, M14 x 2; 23 deep | 400 [5802] | 0 | | S | Suction port, Fixing thread | SAE J518, DIN13 | 3 in, M16 x 2; 24 deep | 2 [29] | 0 | | L ₁ , L ₂ , L ₃ | Drain port | DIN 3852 | M26 x 1.5; 14.5, 16, 14 deep | 2 [29] | X ³⁾ | | M ₄ | Measurement point, servo-piston chamber | DIN 3852 | M12 x 1.5; 12.5 deep | 400 [5802] | Х | | M _B | Measurement point, outlet port | DIN 3852 | M12 x 1.5; 12.5 deep | 400 [5802] | Х | | E | External control port | DIN 3852 | M14 x 1.5; 12 deep | 200 [2901] | Х | ¹⁾ For required torque, please refer to *D1P tightening torque* on page 94. © Danfoss | December 2021 $^{^{2)}}$ O = Open, must be connected (closed by plastic plug on delivery) / X = Closed (closed by metal plug on delivery). $^{^{3)}}$ Depending on installation position, one of L₁ ,L₂ and L₃ must be connected (please refer to Installation Notes). # Input shaft # D1P 130/145 shaft specifications # Shaft torque and dimensions | Code | Description | Maximum Torque
Rating | Drawing | |------|--|----------------------------|---| | Т | Splined shaft DIN
5480, W50 x 2 x 30 x
24 x 9g | 3100 N·m [27437 lbf·in] | Mating coupling must not protrude beyond this point Spline data Paint free Number of teeth: 24 Modules : 2 Pressure angle : 30° Pitch Ø :
Ø48 Type of fit : Flat root side Per : DIN 5480 Class 9g 12±2 5.2±0.5 70 70 70 70 70 70 70 70 70 70 70 70 70 7 | | | | | Min. active spline length ⁽²⁾ :43.5 mm [1.71 in] | | S | Splined shaft SAE
J744, 1 3/4 in. 13T,
8/16 DP | 1528 N•m [13524
lbf•in] | Mating coupling must not protrude beyond this point Paint free Spline data Number of teeth: 13 Pitch fraction: 8/16 Pressure angle: 30° Pitch Ø: Ø41.275 Type of fit: Fillet root side Per: ANSI B92.1-1996. Class 5 Class 5 Mounting flange Mounting flange Class 15 A Dec 64 1744 | | | | | Flange 152-4, Per SAE J744 P400424 Min. active spline length ⁽²⁾ :55 mm [2.71 in] | Shaft torque and dimensions (continued) - 1) Center bore according to DIN 332 (thread according to DIN 13) - 2) Minimum active spline length for the specified torque ratings ## Aux mounting flange #### Size 130/145: Option NN (No Coupling) #### **Specifications** | Option | Coupling | |--------|-------------| | NN | No coupling | # Size 130/145: Option A1 (SAE-A, 9 teeth) # Specifications | Option | Coupling | Max torque | | |--------|----------------------|--------------------------|--| | A1 | 5/8 in, 9T, 16/32 DP | 205 N•m [1814.40 lbf•in] | | # Size 130/145: Option A2 (SAE-A, 11 teeth) ¹⁾Without charge pump ²⁾With charge pump #### **Specifications** | Option | Coupling | Max torque | |--------|---------------------|------------| | A2 | 3/4in, 11T, 16/32DP | Pending | © Danfoss | December 2021 ## Size 130/145: Option B1 (SAE-B, 13 teeth) #### **Specifications** | Option | Coupling | Max torque | |--------|-----------------------|--------------------------| | B1 | 7/8 in, 13T, 16/32 DP | 411 N•m [3637.66 lbf•in] | #### Size 130/145: Option B2 (SAE-B, 15 teeth) #### Specifications | Option | Coupling | Max torque | |--------|-------------------|------------| | B2 | 1in, 15T, 16/32DP | Pending | 58 | © Danfoss | December 2021 # Size 130/145: Option BA (SAE-B, 13 teeth) #### **Specifications** | Option | Coupling | Max torque | |--------|---------------------|--------------------------| | ВА | 7/8in, 13T, 16/32DP | 411 N·m [3637.66 lbf•in] | ## Size 130/145: Option C5 (SAE-C, 14 teeth) ## Specifications | Option | Coupling | Max torque | |--------|----------------------|----------------------------| | C5 | 1 ¼ in, 14T 12/24 DP | 1164 N•m [10302.27 lbf•in] | © Danfoss | December 2021 Size 130/145: Option D5 (SAE-D, 24 teeth) #### Specifications | Option | Coupling | Max torque | |--------|------------------------|----------------------------| | D5 | N50 x 2 x 30 x 24 x 9H | 1164 N•m [10302.27 lbf•in] | Before finalizing your design, please request a certified drawing. #### **Size 193** #### Dimensions (mm) and port descriptions ## Size 193: TPE2 w/ Charge Pump Control: TPE2 Power Control (T) + Pressure Compensated Control (P) + Electric Displacement Control (E2) Auxiliary flange: B1 Before finalizing your design, please request a certified drawing. Before finalizing your design, please request a certified drawing. #### Port Descriptions | Ports | Description | Standard | Size ¹⁾ | Max. pressure (bar [psi]) | State ²⁾ | |--|---|-----------------|----------------------------|---------------------------|---------------------| | В | Outlet port, Fixing thread | SAE J518, DIN13 | 1 1/2 in, M16 x 2; 25 deep | 400 [5802] | 0 | | S | Suction port, Fixing thread | SAE J518, DIN13 | 3 1/2 in, M16 x 2; 25 deep | 2 [29] | 0 | | L ₁ , L ₂ , L ₃ | Drain port | DIN 3852 | M33 x 2; 14,14, 18 deep | 2 [29] | X ³⁾ | | M ₄ | Measurement point, servo-piston chamber | DIN 3852 | M12 x 1.5; 13 deep | 400 [5802] | Х | | M _B | Measurement point, outlet port | DIN 3852 | M12 x 1.5; 13 deep | 400 [5802] | Х | | E | External control port | DIN 3852 | M14 x 1.5; 14 deep | 200 [2901] | X ⁴⁾ | ¹⁾ For required torque, please refer to D1P tightening torque on page 94 ²⁾ O = Open, must be connected (closed by plastic plug on delivery) / X = Closed (closed by metal plug on delivery) $^{^{3)}}$ Depending on installation position, one of L₁ ,L₂ and L₃ must be connected (please refer to Installation Notes). ⁴⁾ If E port is not used, remove the shuttle valve and lock port by seal plug. # Size 193: TPSN w/ Charge Pump Control: TPSN Power Control (T) + Pressure Compensated Control (P) + Load Sensing Control (S) #### Auxiliary flange: NN Before finalizing your design, please request a certified drawing. Before finalizing your design, please request a certified drawing. ## **Port Descriptions** | Ports | Description | Standard | Size ¹⁾ | Max. pressure (bar [psi]) | State ²⁾ | |--|---|-----------------|----------------------------|---------------------------|---------------------| | В | Outlet port, Fixing thread | SAE J518, DIN13 | 1 1/2 in, M16 x 2; 25 deep | 400 [5802] | 0 | | S | Suction port, Fixing thread | SAE J518, DIN13 | 3 1/2 in, M16 x 2; 25 deep | 2 [29] | 0 | | L ₁ , L ₂ , L ₃ | Drain port | DIN 3852 | M33 x 2; 14, 14, 18 deep | 2 [29] | X ³⁾ | | M ₄ | Measurement point, servo-piston chamber | DIN 3852 | M12 x 1.5; 13 deep | 400 [5802] | Х | | M _B | Measurement point, outlet port | DIN 3852 | M12 x 1.5; 13 deep | 400 [5802] | Х | | Х | LS port | DIN 3852 | M14 x 1.5; 12 deep | 400 [5802] | 0 | ¹⁾ For required torque, please refer to *D1P tightening torque* on page 94. ²⁾ O = Open, must be connected (closed by plastic plug on delivery) / X = Closed (closed by metal plug on delivery). $^{^{3)}}$ Depending on installation position, one of L_1 , L_2 and L_3 must be connected (please refer to Installation Notes). ## Input shaft #### D1P 193 shaft specifications © Danfoss | December 2021 | Code | Description | Maximum Torque
Rating | Drawing | |------|--|--------------------------|---| | A | Splined shaft SAE
J744, 2 in, 15T, 8/16
DP | 2422 N·m [21437 lbf·in] | Mating coupling must not Protrude beyond this point Spline data Number of teeth: 15 Pitch friction: 8/16 Pressure angle: 30° pitch: 9/47.625 Type of fit: Fillet root side Per: ANSI B92.1-1996. Class 5 12 ± 2 | | | | | <u></u> | - 1) Center bore according to DIN 332 (thread according to DIN 13) - 2) Minimum active spline length for the specified torque ratings # **Aux mounting flange** #### Size 193: Option NN (No Coupling) P400274 ## Specifications | Option | Coupling | |--------|-------------| | NN | No coupling | ## Size 193: Option A1 (SAE-A, 9 teeth) ## Specifications | Option | Coupling | Max torque | |--------|----------------------|--------------------------| | A1 | 5/8 in, 9T, 16/32 DP | 205 N•m [1814.40 lbf•in] | ## Size 193: Option A3 (SAE-A, 13 teeth) ## Specifications | Option | Coupling | Max torque | |--------|-----------------------|--------------------------| | A3 | 7/8 in, 13T, 16/32 DP | 619 N·m [5478.61 lbf·in] | #### Size 193: Option B1 (SAE-B, 13 teeth) #### **Specifications** | Option | Coupling | Max torque | |--------|-----------------------|--------------------------| | B1 | 7/8 in, 13T, 16/32 DP | 411 N•m [3637.66 lbf•in] | © Danfoss | December 2021 BC157786485289en-000501 | 69 # Size 193: Option B2 (SAE-B, 15 teeth) #### Legend | Dimension | Y2 | N3 | |-----------|------|-------| | Α | 404 | 369.8 | | В | 12.2 | 12.3 | | С | 65 | 63.2 | ## Specifications | Option | Coupling | Max torque | |--------|-------------------|------------| | B2 | 1in, 15T, 16/32DP | Pending | # Size 193: Option BA (SAE-B, 13 teeth) # Legend | Dimension | Value | |-----------|-------| | Α | 404 | | В | 12 | | С | 64 | #### Specifications | Option | Coupling | Max torque | |--------|---------------------|--------------------------| | ВА | 7/8in, 13T, 16/32DP | 411 N·m [3637.66 lbf·in] | © Danfoss | December 2021 BC157786485289en-000501 | 71 Size 193: Option BB (SAE-B, 13 teeth) ## Legend | Dimension | Value | |-----------|-------| | Α | 404 | | В | 11.6 | | С | 63.4 | ## Specifications | Option | Coupling | Max torque | |--------|---------------------|--------------------------| | ВВ | 7/8in, 13T, 16/32DP | 411 N•m [3637.66 lbf•in] | 72 | © Danfoss | December 2021 Size 193: Option C5 (SAE-C, 14 teeth) #### **Specifications** | Option | Coupling | Max torque | |--------|-------------------------|----------------------------| | C5 | 1 1/4 in, 14T, 12/24 DP | 1289 N·m [11408.61 lbf•in] | ## Size 193: Option C9 (SAE-C, 13 teeth) ## Specifications | Option | Coupling | Max torque | |--------|------------------------|----------------------------| | C9 | 1 3/4 in, 13T, 8/16 DP | 1790 N•m [15842.83 lbf•in] | © Danfoss | December 2021 BC157786485289en-000501 | 73 Size 193: Option D2 (SAE-D, 13 teeth) #### Specifications | Option | Coupling | Max torque | |--------|------------------------|----------------------------| | D2 | 1 3/4 in, 13T, 8/16 DP | 1630 N·m [14426.72 lbf•in] | Size 193: Option D5 (SAE-D, 24 teeth) #### **Specifications** | Option | Coupling | Max torque | |--------|------------------------|----------------------------| | D5 | N50 x 2 x 30 x 24 x 9H | 1790 N·m [15842.83 lbf•in] | Size 193: Option E2 (SAE-E, 24 teeth) ## Specifications | Option | Coupling | Max torque | |--------|------------------------|----------------------------| | E2 | N50 x 2 x 30 x 24 x 9H | 1790 N·m [15842.83 lbf·in] | Before finalizing your design, please request a certified drawing. © Danfoss | December 2021 #### Size 260 #### Dimensions (mm) and port descriptions ## Size 260: TPE2 w/ Charge Pump Control: TPE2 Power Control (T) + Pressure Compensated Control (P) + Electric Displacement Control (E2) Auxiliary flange: B1 Before finalizing your design, please request a certified drawing. Before finalizing your design, please request a certified
drawing. ## **Port Descriptions** | Ports | Description | Standard | Size ¹⁾ | Max. pressure (bar [psi]) | State ²⁾ | |--|---|-----------------|----------------------------|---------------------------|---------------------| | В | Outlet port, Fixing thread | SAE J518, DIN13 | 1 1/2 in, M16 x 2; 25 deep | 400 [5802] | 0 | | S | Suction port, Fixing thread | SAE J518, DIN13 | 4 in, M16 x 2; 25 deep | 2 [29] | 0 | | L ₁ , L ₂ , L ₃ | Drain port | DIN 3852 | M33 x 2; 17, 16.5, 22 deep | 2 [29] | X ³⁾ | | M ₄ | Measurement point, servo-piston chamber | DIN 3852 | M12 x 1.5; 12.5 deep | 400 [5802] | Х | | M _B | Measurement point, outlet port | DIN 3852 | M12 x 1.5; 12.5 deep | 400 [5802] | Х | | E | External control port | DIN 3852 | M14 x 1.5; 14 deep | 200 [2901] | X ⁴⁾ | ¹⁾ For required torque, please refer to D1P tightening torque on page 94 © Danfoss | December 2021 ²⁾ O = Open, must be connected (closed by plastic plug on delivery) / X = Closed (closed by metal plug on delivery) $^{^{3)}}$ Depending on installation position, one of L₁ ,L₂ and L₃ must be connected (please refer to Installation Notes). ⁴⁾ If E port is not used, remove the shuttle valve and lock port by seal plug. Size 260: TPSN w/ Charge Pump Control: TPSN Power Control (T) + Pressure Compensated Control (P) + Load Sensing Control (S) Auxiliary flange: NN Before finalizing your design, please request a certified drawing. Before finalizing your design, please request a certified drawing. ## **Port Descriptions** | Ports | Description | Standard | Size ¹⁾ | Max. pressure (bar [psi]) | State ²⁾ | |--|---|-----------------|----------------------------|---------------------------|---------------------| | В | Outlet port, Fixing thread | SAE J518, DIN13 | 1 1/2 in, M16 x 2; 25 deep | 400 [5802] | 0 | | S | Suction port, Fixing thread | SAE J518, DIN13 | 4 in, M16 x 2; 25 deep | 2 [29] | 0 | | L ₁ , L ₂ , L ₃ | Drain port | DIN 3852 | M33 x 2; 17,16.5, 22 deep | 2 [29] | X ³⁾ | | M ₄ | Measurement point, servo-piston chamber | DIN 3852 | M12 x 1.5; 12.5 deep | 400 [5802] | Х | | M _B | Measurement point, outlet port | DIN 3852 | M12 x 1.5; 12.5 deep | 400 [5802] | Х | | х | LS port | DIN 3852 | M14 x 1.5; 12 deep | 400 [5802] | 0 | ¹⁾ For required torque, please refer to *D1P tightening torque* on page 94. © Danfoss | December 2021 $^{^{2)}}$ O = Open, must be connected (closed by plastic plug on delivery) / X = Closed (closed by metal plug on delivery). $^{^{3)}}$ Depending on installation position, one of L₁, L₂ and L₃ must be connected (please refer to Installation Notes). # Input shaft # D1P 260 shaft specifications | Splined shaft DIN 5480, W60 x 2 x 30 x S432 N-m [48077 Ibf-in] [480 | Code | Description | Maximum Torque
Rating | Drawing | |--|------|----------------------|--------------------------|--| | J744, 1 3/4 in. 13T, 8/16 DP Spline data Number of teeth : 13 Prick friction : 8/16 Pressure angle : 30° pitch : Ø 41.275 Type of fit : Filter toot side Per: ANSI B92.1-1996. Class 5 | | 5480, W60 x 2 x 30 x | | Protrude beyond this point Spline data Number of teeth: 28 Modules: 2 Pressure angle: 30° Pitch Ø: Ø56 Type of fit: Flat root side Per: DIN 5480 class 9g 15±2 6±0.5 10 42±2 FULL THD T | | Mounting flange Flange 165-4 Per SAE J744 Per SAE J744 Per SAE J744 Min. active spline length(2):55 mm [2.17 in] | | J744, 1 3/4 in. 13T, | | Spline data Number of teeth : 13 Pitch friction : 8/16 Pressure angle : 30° pitch : 0 41.275 Type of fit : Fillet root side Per : ANSI B92.1-1996. Class 5 12±2 5.2±0.5 10 10 10 10 10 10 10 10 10 1 | - 1) Center bore according to DIN 332 (thread according to DIN 13) - 2) Minimum active spline length for the specified torque ratings ## Aux mounting flange #### Size 260: Option A1 (SAE-A, 9 teeth) #### **Specifications** | Option | Coupling | Max torque | |--------|----------------------|--------------------------| | A1 | 5/8 in, 9T, 16/32 DP | 205 N·m [1814.40 lbf·in] | ## Size 260: Option A3 (SAE-A, 13 teeth) #### **Specifications** | Option | Coupling | Max torque | |--------|-----------------------|--------------------------| | А3 | 7/8 in, 13T, 16/32 DP | 619 N·m [5478.61 lbf·in] | © Danfoss | December 2021 BC157786485289en-000501 | 83 # Size 260: Option B1 (SAE-B, 13 teeth) #### **Specifications** | Option | Coupling | Max torque | |--------|-----------------------|--------------------------| | B1 | 7/8 in, 13T, 16/32 DP | 411 N•m [3637.66 lbf•in] | ## Size 260: Option B2 (SAE-B, 15 teeth) #### Legend | Dimension | Y3 | |-----------|------| | A | 437 | | В | 15.4 | | С | 63 | 84 | $^{\odot}$ Danfoss | December 2021 ## Specifications | Option | Coupling | Max torque | |--------|-------------------|------------| | B2 | 1in, 15T, 16/32DP | Pending | # Size 260: Option BA (SAE-B, 13 teeth) ## Legend | Dimension | Value | |-----------|-------| | Α | 437 | | В | 15.4 | | С | 63 | #### **Specifications** | Option | Coupling | Max torque | |--------|---------------------|--------------------------| | ВА | 7/8in, 13T, 16/32DP | 411 N·m [3637.66 lbf•in] | © Danfoss | December 2021 BC157786485289en-000501 | 85 # Size 260: Option BB (SAE-B, 13 teeth) ## Legend | Dimension | Value | |-----------|-------| | Α | 437 | | В | 15.4 | | С | 62.25 | ## Specifications | Option | Coupling | Max torque | | |--------|---------------------|--------------------------|--| | ВВ | 7/8in, 13T, 16/32DP | 411 N•m [3637.66 lbf•in] | | 86 | © Danfoss | December 2021 # Size 260: Option C5 (SAE-C, 14 teeth) #### **Specifications** | Option | Coupling | Max torque | |--------|-------------------------|----------------------------| | C5 | 1 1/4 in, 14T, 12/24 DP | 1638 N•m [14497.52 lbf•in] | © Danfoss | December 2021 # Size 260: Option C9 (SAE-C, 13 teeth) ####
Specifications | Option | Coupling | Max torque | |--------|------------------------|----------------------------| | C9 | 1 3/4 in, 13T, 8/16 DP | 1891 N•m [16736.76 lbf•in] | #### Size 260: Option D2 (SAE-D, 13 teeth) # Specifications | Option | Coupling | Max torque | |--------|------------------------|----------------------------| | D2 | 1 3/4 in, 13T, 8/16 DP | 1819 N·m [16099.50 lbf·in] | 88 | $^{\odot}$ Danfoss | December 2021 ## Size 260: Option D5 (SAE-D, 24 teeth) ## Specifications | Option | Coupling | Max torque | |--------|------------------------|----------------------------| | D5 | N50 x 2 x 30 x 24 x 9H | 1936 N·m [17135.04 lbf•in] | #### Size 260: Option E2 (SAE-E, 24 teeth) #### Specifications | Option | Coupling | Max torque | |--------|------------------------|----------------------------| | E2 | N50 x 2 x 30 x 24 x 9H | 1936 N•m [17135.04 lbf•in] | © Danfoss | December 2021 BC157786485289en-000501 | 89 # Size 260: Option E3 (SAE-E, 28 teeth) #### Specifications | Option | Coupling | Max torque | |--------|------------------------|----------------------------| | E3 | N60 x 2 x 30 x 28 x 9H | 1936 N•m [17135.04 lbf•in] | Before finalizing your design, please request a certified drawing. # Inlet pressure gauge port An inlet pressure gauge port is offered in certain porting configurations. Pump configurations with this additional port are indicated in the table below. | Displacement | Porting Option | Porting Option | | | |--------------|----------------|----------------|-----|--| | D1P145 | CW | w/o impeller | No | | | | | w/ impeller | Yes | | | | CCW | w/o impeller | Yes | | | | | w/ impeller | Yes | | | D1P193 | CW | w/o impeller | Yes | | | | | w/ impeller | Yes | | | | CCW | w/ impeller | No | | | D1P260 | CW | w/ impeller | No | | | | CCW | w/ impeller | Yes | | *Inlet pressure gauge port general location* # D1P 260 CCW + Inlet pressure gauge port | Port | Description | Standard | Size | Max. Pressure
(bar [psi]) | State | |------|-------------------------------------|----------|-----------|------------------------------|-------| | M5 | Measurement point, suction pressure | DIN 3852 | M12 x 1.5 | 100 [1450] | X | ## **Additional Information** # D1P tandem with Danfoss pumps | | 1st Pump | | 2nd Pump | | | | | | | |--------------|--------------------------|------|--|---|---------------------|------------------------------------|-----------------------|-----------------------|--------------------------| | | D1P (OC)
Through Driv | e | D1P (OC) S45 (OC) S90 (CC) H1P (CC) S42 (CC) S40 (CC) Gear | | | | Gear Pump | | | | Flange | Coupling | Code | Size (shaft) | 82-2 | 5/8 in | A1 | | | | | | | 4 ~ 45
(SA, SM, SE) | | A | 9T | А3 | | | | | | | 7 ~ 45
(SH) | | 101-2
B | 7/8 in
13T | B1 | | 25, 30, 38, 45
(C2) | | 45, 53
(G4) | 28, 32, 41, 51
(C) | 25, 35, 44, 46
(A) | 7 ~ 90
(SA, SL, SH) | | 127-2&4
C | 1 1/4 in
14T | C5 | | 45, 51, 60, 65, 74,
75, 90, 100, 130,
147
(S1) | 55, 75, 100
(S1) | 60, 68, 69, 78,
89, 100
(G1) | | | 22 ~ 200
(RA, RD, S0) | | | 1 3/4 in
13T | C9 | | 100, 130, 147
(S4) | | | | | | | 152-4 | W50 | D5 | 130/145
(T) | | | | | | | | D | 1 3/4 in
13T | D2 | | | 130
(F1) | 115, 130, 147,
165
(G3) | | | | | 165-4
E | W50 | E2 | 193
(T) | | | | | | | | 165-4
E | W60 | E3 | 260
(T) | | | | | | | # D1P tandem pump torque Maximum torque rating and tandem pump torque | D1 Pump Displacement | 130/145 | 193 | 260 | | |---|---------|---|------------------------------|-------------------------------| | Torque at Vg max and $\Delta p = 350$ bar | | 724/808 N•m
[6407.94/7151.40 lbf•in] | 1075 N•m [9514.55
lbf•in] | 1448 N•m [12815.88
lbf•in] | | Max torque rating of input shaft | Т | 3100 N·m [27437 lbf•in] | 3100 N•m [27437 lbf•in] | 5432 N•m [48077 lbf•in] | | | S | 1528 N•m [13524 lbf•in] | 1536 N•m [13595 lbf•in] | 1535 N•m [13586 lbf•in] | | | A | - | 2422 N•m [21437 lbf•in] | 3621 N•m [32049 lbf•in] | | | Р | 1411 N·m [12488 lbf•in] | 2195 N•m [19427 lbf•in] | 2571 N•m [22755 lbf•in] | | | K | 1787 N•m [15816 lbf•in] | 1787 N•m [15816 lbf•in] | 1787 N•m [15816 lbf•in] | © Danfoss | December 2021 BC157786485289en-000501 | 93 #### **Additional Information** Maximum torque rating and tandem pump torque (continued) | D1 Pump Displacement | | 130/145 | 193 | 260 | |--|----|-------------------------------|-------------------------------|-------------------------------| | Max torque rating of different aux mounting flange options | A1 | 205 N•m [1814.40
lbf•in] | 205 N•m [1814.40
lbf•in] | 205 N•m [1814.40
lbf•in] | | | A2 | Pending | - | - | | | A3 | - | 619 N•m [5478.61
lbf•in] | 619 N•m [5478.61
lbf•in] | | | B1 | 411 N•m [3637.66
lbf•in] | 411 N•m [3637.66
lbf•in] | 411 N•m [3637.66
lbf•in] | | | B2 | Pending | Pending | Pending | | | ВА | 411 N•m [3637.66
lbf•in] | 411 N•m [3637.66
lbf•in] | 411 N•m [3637.66
lbf•in] | | | ВВ | 411 N•m [3637.66
lbf•in] | 411 N•m [3637.66
lbf•in] | 411 N•m [3637.66
lbf•in] | | | C5 | 1164 N•m [10302.27
lbf•in] | 1289 N•m [11408.61
lbf•in] | 1638 N•m [14497.52
lbf•in] | | | C9 | - | 1790 N•m [15842.83
lbf•in] | 1891 N•m [16736.76
lbf•in] | | | D2 | 1130 N•m [10001.35
lbf•in] | 1630 N•m [14426.72
lbf•in] | 819 N•m [16099.51
lbf•in] | | | D5 | 1164 N•m [10302.27
lbf•in] | 1790 N•m [15842.83
lbf•in] | 1936 N•m [17135.04
lbf•in] | | | E2 | - | 1790 N•m [15842.83
lbf•in] | 1936 N•m [17135.04
lbf•in] | | | E3 | - | - | 1936 N•m [17135.04
lbf•in] | ## D1P tightening torque The following tightening torques apply: **Fittings** Observe the manufacturer's instruction regarding the tightening torques of the fittings used. Fixing screws For fixing screws according to DIN 13, we recommend checking the tightening torque individually according to VDI 2230. Locking screws For the metal locking screws supplied with the D1 pump, the required torques are as indicated in the table below: | Thread size | Standard | Required torque | Wrench size | |-------------|----------|--------------------------|-------------| | M12 x 1.5 | | 25 N·m [221.27 lbf•in] | 6 mm | | M14 x 1.5 | DIN 3852 | 34 N·m [300.93 lbf•in] | 6 mm | | M26 x 1.5 | | 60 N·m [531.05 lbf•in] | 12 mm | | M33 x 2 | | 225 N•m [1991.42 lbf•in] | 17 mm | 94 | © Danfoss | December 2021 ## **Installation Notes** ## D1P below-reservoir (standard) Recommended arrangements: 1 and 2. Fill pump case with clean oil before start **Suction (absolute):** P min = 0.6 bar with charge pump (0.8 bar without charge pump), P max = 2 bar. Do not restrict suction line **Drain (absolute):** P max = 2 bar. Do not restrict drain line, do not combine drain line | Arrangements | Air Bleeding | Filling | |--------------|--------------|-------------| | 1 | L1 | S + L1 | | 2 | L3 | S + L2 | | 3 | L1 / L2 | S+L1/L2 | | 4 | L3 | S + L1 / L2 | © Danfoss | December 2021 #### Installation Notes ## D1P above-reservoir Fill pump case with clean oil before start **Suction (absolute):** P min = 0.6 bar with charge pump (0.8 bar without charge pump), P max = 2 bar. Do not restrict suction line **Drain (absolute):** P max = 2 bar. Do not restrict drain line, do not combine drain line | Arrangements | Air Bleeding | Filling | |--------------|--------------|-----------------------| | 5 | V1 + V2 | V2 (S) + V1 (L1) | | 6 | L3 + V2 | V2 (S) + V1 (L2) | | 7 | V1 + V2 | V2 (S) + V1 (L1 / L2) | #### Caution! Installation hazards! Failure to adhere to the installation notes may result in shortened product life. The maximum allowable suction height is 0.8m. The allowable suction height is derived from the total pressure loss. The D1 pump with charge pump is not designed for above-Reservoir installation. For control options with pressure controllers, proportional displacement control, the minimum displacement setting must be $Vg \ge 5\% \ Vg \ max$. Recommendation for arrangement 7 (shaft upwards): A check valve in the case drain line (cracking pressure 0.5 bar) can prevent draining of the case interior. #### Installation Notes #### D1P reservoir installation 200mm min P400091 Fill pump case with clean oil before start **Suction (absolute):** P min = 0.6 bar with charge pump (0.8 bar without charge pump), P max = 2 bar. Do not restrict suction line **Drain (absolute):** P max = 2 bar. Do not restrict drain line, do not combine drain line | Arrangements | Air Bleeding | Filling | |--------------|--------------|---| | 8 | L1 | Automatically via all open L1, L2, L3 | | 9 | L3 | and S ports through position below the hydraulic fluid level. | | 10 | L3 | , | - It is recommended to fit a pipe to the suction port S and fitting a pipe to case drain port L1, L2 or L3 (See arrangements), the other case drain ports must be plugged in this situation. The pump should be filled before fitting the pipe and filling the tank with hydraulic fluid. - It is only permissible to install a pump with solenoids (E.g. a pump with electric displacement control) at tank-level, if used hydraulic fluids are based on mineral oil and the oil temperature in the tank does not exceed 80° C. # **Displacement Limiter** # D1P displacement limiter Series D1 pumps feature maximum and minimum displacement limiters, which limit displacement mechanically. # Maximum Displacement Limiter | Frame | Setting range | Displacement change per turn | |-------|--|------------------------------| | 130 | 72 cm ³ – 130 cm ³ | 11 cm ³ /rev | | 145 | 72 cm ³ – 145 cm ³ | 11 cm ³ /rev | | 193 | 0 cm ³ – 193 cm ³ | 16 cm ³ /rev | | 260 | 56 cm ³ – 260 cm ³ | 19 cm ³ /rev | # Minimum Displacement
Limiter | Frame | Setting range | Displacement change per turn | |-------|---|------------------------------| | 130 | 0 cm ³ – 124 cm ³ | 9 cm ³ /rev | | 145 | 0 cm ³ – 124 cm ³ | 9 cm ³ /rev | | 193 | 0 cm ³ – 193 cm ³ | 15 cm ³ /rev | | 260 | 0 cm ³ – 260 cm ³ | 18 cm ³ /rev | #### Displacement Limiter Cross-Section View #### Products we offer: - Cartridge valves - DCV directional control valves - · Electric converters - · Electric machines - · Electric motors - Gear motors - Gear pumps - Hydraulic integrated circuits (HICs) - · Hydrostatic motors - Hydrostatic pumps - Orbital motors - PLUS+1® controllers - PLUS+1® displays - PLUS+1* joysticks and pedals - PLUS+1® operator interfaces - PLUS+1® sensors - PLUS+1® software - PLUS+1® software services, support and training - Position controls and sensors - PVG proportional valves - Steering components and systems - Telematics **Hydro-Gear** www.hydro-gear.com **Daikin-Sauer-Danfoss** www.daikin-sauer-danfoss.com **Danfoss Power Solutions** is a global manufacturer and supplier of high-quality hydraulic and electric components. We specialize in providing state-of-the-art technology and solutions that excel in the harsh operating conditions of the mobile off-highway market as well as the marine sector. Building on our extensive applications expertise, we work closely with you to ensure exceptional performance for a broad range of applications. We help you and other customers around the world speed up system development, reduce costs and bring vehicles and vessels to market faster. Danfoss Power Solutions – your strongest partner in mobile hydraulics and mobile electrification. #### Go to www.danfoss.com for further product information. We offer you expert worldwide support for ensuring the best possible solutions for outstanding performance. And with an extensive network of Global Service Partners, we also provide you with comprehensive global service for all of our components. | Local | ladd | racc | |-------|------|------| | | | | Danfoss Power Solutions (US) Company 2800 East 13th Street Ames, IA 50010, USA Phone: +1 515 239 6000 Danfoss Power Solutions GmbH & Co. OHG Krokamp 35 D-24539 Neumünster, Germany Phone: +49 4321 871 0 Danfoss Power Solutions ApS Nordborgvej 81 DK-6430 Nordborg, Denmark Phone: +45 7488 2222 Danfoss Power Solutions Trading (Shanghai) Co., Ltd. Building #22, No. 1000 Jin Hai Rd Jin Qiao, Pudong New District Shanghai, China 201206 Phone: +86 21 2080 6201 Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.