TORSIONALLY RIGID AND FLEXIBLE

BELLOWS COUPLINGS

SERIES BK | 2 - 10,000 Nm

THE ULTIMATE COUPLING FROM 2 - 10,000 Nm

TORSIONALLY STIFF METAL BELLOWS COUPLINGS

Areas of Application:

Highly dynamic axis of:

- Servo drives
- CNC axes
- Robotic axes
- Manipulators
- Linear actuators
- Automation plants
- Sheet metal cutting machines
- Printing machinery
- Packaging machinery
- Woodworking machinery
- Textile machinery
- Metal cutting machines
- Stone cutting machines
- Gear grinding machines

Properties of the Product Range:

- compact
- zero backlash
- high torsional stiffness
- exact transmission of angular motion and torque
- infinite life
- wear and maintenance free
- high operation dependability
- multiple mounting possibilities
- easy mounting and dismounting
- compensation for axial, lateral and angular shaft misalignment accompanied by quiet, uniform operation
- low restoring forces
- balanced for high speeds

MODEL

PROPERTIES

APPLICATION EXAMPLES

with flange mounting

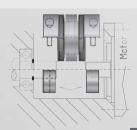
from 15-10,000 Nm

special design application

see page 5

with clamping hub from 15-1,500 Nm

- easy to mount
- suited for space restricted installations
- low moment of inertia
- finely balanced up to 40,000 rpm available



see page 6

with split hub from 15-1,500 Nm

- for radial mounting
- suited for space restricted installations
- low moment of inertia
- finely balanced up to 40,000 rpm available

see page 7

Economy Class with clamping hub from 2-500 Nm

- low cost version
- self opening clamping system optional
- low moment of inertia

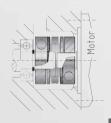
see page 8



MODEL PROPERTIES APPLICATION EXAMPLES

Economy Class with clamping hub from 15-500 Nm

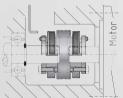
- speeds of up to 80000 rpm
- compact design
- self opening clamping system optional



see page 9

with clamping hub from 2-1000 Nm

- high transmittable torques, while maintaining a compact design
- easy to mount
- Lowest moment fo inertia



see page 10

with tapered conical sleeves from 15-10,000 Nm

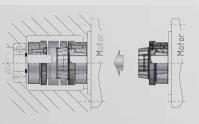
- high clamping forces
- high degree of operating dependability
- new draw-off device suited for space restricted installations

Approach to date

see page 11

with tapered press-fit connection from 15-1,500 Nm

- absolutely backlash-free
- easy mounting and dismounting
- wear-free press fit connection
- electrically and thermally insulated



see page 12

BK 6

with conical sleeve and tapered press-fit connection from 15-1,500 Nm

- for axial mounting
- absolutely backlash-free
- easy mounting and dismounting
- wear-free press-fit connection
- electrically and thermally insulated

see page 13

TORSIONALLY STIFF METAL BELLOWS COUPLINGS

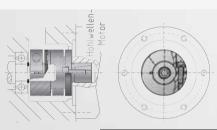
MODEL

PROPERTIES


APPLICATION EXAMPLES

for Fanuc-drives from 15-150 Nm

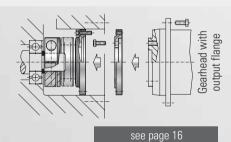
- for conical shaft mounting
- easy to assemble
- high clamping forces, due to conical sleeves



see page 14

with expanding shaft from 15-300 Nm

- for hollow shaft mounting
- suited for space restricted installations
- easy mounting



see page 15

for ISO-Flange mounting from 15-2.600 Nm


- for ISO Gearheads or output flanges
- backlash free and high torsional rigid
- high transmittable torques while maintaining a compact design

ZA

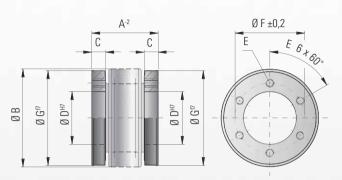
Line shafts with clamping hub from 10-4,000 Nm

- removable intermediate tube section
- no additional bearing neccessary
- standard length up to 6 m

see separate catalog

for use in explosive environments

- available for the full product range
- for hazardous areas 1/21 and 2/22 bellows couplings are registered according to the directive ATEX 95a



see page 17

BACKLASH-FREE, TORSIONALLY STIFF METAL BELLOWS COUPLINGS

with flange mounting

Properties:

Material:

Design:

The hubs have six threaded metric mounting holes, and the ID and OD are concentrically machined to ISO H7 tolerances.

Bellows made of highly flexible high grade

Hubs with custom bore size, mounting threads and bolt circles are available upon request.

Temperature range:

Speeds:

-30 to +110° C (-22 F to 230 F)

special design application

stainless steel, hub material: steel

Up to 10,000 rpm, in excess of 10,000 with finely balanced version.

Service life:

These couplings are maintenance-free if the technical limits are not exceeded

Backlash:

Brief overloads:

Acceptable up to 1.5 times the value specified.

Absolutely backlash-free due to bolted connection.

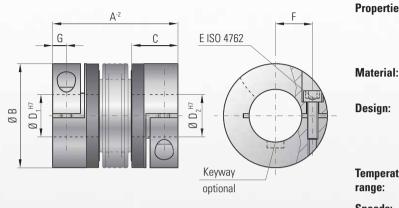
Non-standard application:

Custom designs with varied tolerances, keyways, non-standard material, bellows and ATEX designs are available upon request.

Ordering example BK1/150 / 62 /XX Model Series / Nm Overall length Non standard e.g. stainless steel

Madal DV 1													Sei	ries						
Model BK 1		1	5	3	0	6	0	15	50	20	00	30	00	50	00	800	1500	4000	6000	10000
Rated torque (Nm	T _{KN}	1	5	3	0	6	0	15	50	21	00	30	00	51	00	800	1500	4000	6000	10000
Overall length (mm	A-2	30	37	36	44	43	53	50	62	53	65	56	70	64	77	81	100	145	138	150
Outer diameter of bellows (mm	В	4	9	5	5	6	6	8	1	9	0	11	10	1:	24	133	157	200	253	303
Fit length/thread depth (mm	С	7.	.5	1	0	1	1	1	3	14	1.5	1	5	1	6	18	22	30	30	36
Inner diameter H7 (mm	D	2	5	2	18	3	8	5	0	5	8	6	5	7	0	75	85	100	145	190
Fastening threads 6x	Е	6 x	M5	6 x	M5	6 x	M6	6 x	M6	6 x	M6	6 x	M8	6 x	M8	6 x M10	6 x M16	6 x M20	8 x M20	8 x M24
Hub bolt circle ± 0.2 (mm	F	3	5	3	7	4	6	6	2	7	0	8	0	g	4	90	110	140	190	234
Outer diameter f7 (mm	G	4	9	5	5	6	6	8	1	g	0	11	10	1:	22	116	140	182	235	295
Moment of inertia (10 ⁻³ kgm ²	J _{total}	0.07	0.08	0.14	0.15	0.30	0.32	0.90	0.95	1.30	1.40	1.95	2.10	3.0	3.4	4.3	10.6	46	132	350
Approx. weight (kg		0.1	15	0	.2	0.	.3	0	.6	0	.8	1.3	35	1	.8	1.9	3.3	8.9	13.9	23.7
Torsional stiffness (10 ³ Nm/rad	C _T	20	15	39	28	76	55	175	110	191	140	450	350	510	500	780	1304	3400	5700	10950
axial ± (mm		1	2	1	2	1.5	2	2	3	2	3	2.5	3.5	2.5	3.5	3.5	3.5	3.5	3	3
lateral ± (mm	Max. values	0.15	0.2	0.2	0.25	0.2	0.25	0.2	0.25	0.25	0.3	0.25	0.3	0.3	0.35	0.35	0.35	0.4	0.4	0.4
angular ± (degree		1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1.5	1.5	1.5	1.5	1.5
axial spring stiffness (N/mm	C _a	25	15	50	30	72	48	82	52	90	60	105	71	70	48	100	320	565	1030	985
lateral spring stiffness (N/mm	C _r	475	137	900	270	1200	420	1550	435	2040	610	3750	1050	2500	840	2000	3600	6070	19200	21800
1N A O OF :- II)																<u> </u>			1	

(1Nm ≙ 8.85 in lbs)


www.rw-america.com R+W | 5

BACKLASH-FREE, TORSIONALLY STIFF METAL BELLOWS COUPLINGS

with clamping hub

Properties:

easy to mount

suited for space restricted installations

■ low moment of inertia

Bellows made of highly flexible high-grade stainless steel, hub material; see table below

With a single radial clamping screw per hub ISO 4762. Any imbalance of the clamping hubs is compensated for by balancing bores located on the inside of the hub.

Temperature

Speeds:

-30 to +110° C (-22 F to 230 F)

Up to 10,000 rpm, in excess of 10,000 available with a finely balanced version.

Service life: These couplings are maintenance-free if the technical ratings are not exceeded.

Backlash: Absolutely backlash-free due to frictional clamp connection.

Brief overloads: Acceptable up to 1.5 times the value specified.

On the hub/shaft connection 0.01 to 0.05 mm

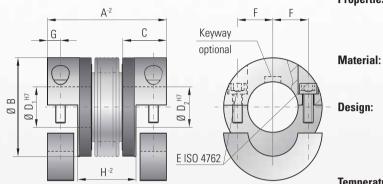
Ordering example BK2 /80 / 94 / 20 / 25.4 / XX Model Series / Nm Overall length Ø D1 H7 Ø D2 H7 Non standard e.g. stainless steel

Non-standard application:

Tolerance:

Custom designs with varied tolerances, keyways, non-standard material, bellows and ATEX designs are available upon request.

M LIDKO		Series Series																	
Model BK 2		1	5	3	0	6	0	8	0	1!	50	20	0	30	00	50	00	800	1500
Rated torque (Nm)	T _{KN}	1	5	3	0	6	60	8	0	15	50	20	10	30	00	50	00	800	1500
Overall length (mm)	A-2	59	66	69	77	83	93	94	106	95	107	105	117	111	125	133	146	140	166
Outer diameter (mm)	В	4	9	5	5	6	6	8	1	8	1	9	0	11	10	12	24	134	157
Fit length (mm)	С	2	2	2	7	3	81	3	6	3	6	4	1	4	3	5	i1	45	55
Inner diameter possible from Ø to Ø H7 (mm)	D ₁ /D ₂	8-2	28	10-	-30	12	-32	14	-42	19	-42	22-	45	24	-60	35-	-60	40-75	50-80
Fastening screw ISO 4762		M	15	N	16	N	18	М	10	М	10	M	12	М	12	М	16	2xM16	2xM20
Thightening torque of the fastening screw (Nm)	E	8	3	1	5	4	10	5	0	7	0	12	!0	13	30	20	00	250	470
Distance between centers (mm)	F	1	7	1	9	2	23	2	7	2	7	3	1	3	9	4	1	2x48	2x55
Distance (mm)	G	6.	5	7.	.5	9	.5	1	1	1	1	12	.5	1	3	16	6.5	18	22.5
Moment of inertia (10 ⁻³ kgm²)	J	0.06	0.07	0.12	0.13	0.32	0.35	0.8	0.85	1.9	2	3.2	3.4	7.6	7.9	14.3	14.6	16.2	43
Hub material (standard) (steel on request)		A optiona		Δ optiona		option	Al al Stahl	option	**	Ste optio		Ste optior		Ste		Ste		steel	steel
Approx. weight (kg)		0.1	16	0.3	26	0.	48	0	.8	1.	85	2.6	35	4	1	6.	.3	5.7	11.5
Torsional stiffness (10 ³ Nm/rad)	C_{T}	20	15	39	28	76	55	129	85	175	110	191	140	450	350	510	500	780	1304
axial ± (mm)		1	2	1	2	1.5	2	2	3	2	3	2	3	2.5	3.5	2.5	3.5	3.5	3.5
lateral ± (mm)	Max. values	0.15	0.2	0.2	0.25	0.2	0.25	0.2	0.25	0.2	0.25	0.25	0.3	0.25	0.3	0.3	0.35	0.35	0.35
angular ± (degree)	varues	1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1.5	1.5
axial spring stiffness (N/mm)	C _a	25	15	50	30	72	48	48	32	82	52	90	60	105	71	70	48	100	320
lateral spring stiffness (N/mm)	C,	475	137	900	270	1200	420	920	290	1550	435	2040	610	3750	1050	2500	840	2000	3600


(1Nm ≙ 8.85 in lbs)

* two screws each hub, 180° apart

BACKLASH-FREE, TORSIONALLY STIFF METAL BELLOWS COUPLINGS

with split hub

Properties:

easy to mount

suited for space restricted installations

■ low moment of inertia

Bellows made of highly flexible high-grade stainless steel. Hub material see table

Both clamping hubs are completely separable, due to split hubs and two radial screws ISO 4762 on each hub. Any imbalance of the clamping hubs is compensated for by balancing bores located on the inside of the hub.

Temperature range:

Speeds:

-30 to +110° C (-22 F to 230 F)

Up to 10,000 rpm, in excess of 10,000 available

with a finely balanced version.

Service life:

These couplings are maintenance-free if the technical ratings are not exceeded.

Backlash: Absolutely backlash-free due to frictional clamp connection.

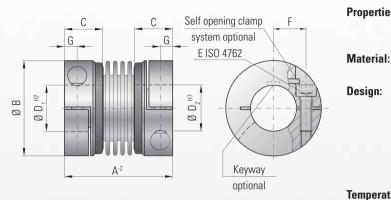
Brief overloads: Tolerance:

Tolerance: Non-standard application: Acceptable up to 1.5 times the value specified. On the hub/shaft connection 0.01 to 0.05 mm

Custom designs with varied tolerances, keyways, non-standard material, bellows and ATEX designs are available upon request.

Ordering example BKH / 80 / 94 / 20 / 25.4 / XX Model Series / Nm Overall length Ø D1 H7 Ø D2 H7 Non standard e.g. stainless steel

Madal DVII											Ser	ies							
Model BKH		1!	5	3	0	6	0	8	0	1!	50	20	0	30	00	50	00	800	1500
Rated torque (Nm)	T _{KN}	15	ō	3	0	6	0	8	0	15	50	20	10	30	00	50	00	800	1500
Overall length (mm)	A-2	59	66	69	77	83	93	94	106	95	107	105	117	111	125	133	146	140	166
Outer diameter (mm)	В	49	9	5	5	6	6	8	1	8	1	9	0	11	10	13	24	134	157
Fit length (mm)	С	22	2	2	7	3	1	3	6	3	6	4	1	4	3	5	1	45	55
Inner diameter possible from Ø to Ø H7 (mm)	D ₁ /D ₂	8-2	28	10-	-30	12-	-32	14	-42	19	-42	22-	45	24-	-60	35	-60	40-75	50-80
Fastening screw ISO 4762		М	5	M	16	N	18	М	10	М	10	М	12	М	12	М	16	M16	M20
Thightening torque of the fastening screw (Nm)	E	8		1	5	4	0	5	0	7	0	12	.0	13	30	20	00	250	470
Distance between centers (mm)	F	17	7	1	9	2	3	2	7	2	7	3	1	3	9	4	.1	48	55
Distance (mm)	G	6.	5	7.	.5	9	.5	1	1	1	1	12	.5	1	3	16	3.5	18	22.5
Distance (mm)	H-2	29	36	35	43	41	51	47	59	48	60	51	63	55	69	62	75	65.5	71
Moment of inertia (10 ⁻³ kgm ²)	$J_{_{\mathrm{total}}}$	0.07	0.08	0.14	0.15	0.23	0.26	0.65	0.67	2.5	3.2	4.5	5.4	8.5	10.5	17.3	19.6	24.3	49.2
Hub material (standard) (steel on request)		A optiona		A optiona	**	A option		option			eel nal Al	Ste option		Ste option			eel nal Al	steel	steel
Approx. weight (kg)		0.1	5	0.	.3	0	.4	0	.8	1	.7	2.	5	4	1	7	.5	7	12
Torsional stiffness (10 ³ Nm/rad)	C_{\scriptscriptstyleT}	20	15	39	28	76	55	129	85	175	110	191	140	450	350	510	500	780	1304
axial ± (mm)	Max.	1	2	1	2	1.5	2	2	3	2	3	2	3	2.5	3.5	2.5	3.5	3.5	3.5
lateral ± (mm)	values	0.15	0.2	0.2	0.25	0.2	0.25	0.2	0.25	0.2	0.25	0.25	0.3	0.25	0.3	0.3	0.35	0.35	0.35
angular ± (degree)		1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1.5	1.5
axial spring stiffness (N/mm)	C _a	25	15	50	30	72	48	48	32	82	52	90	60	105	71	70	48	100	320
lateral spring stiffness (N/mm)	C _r	475	137	900	270	1200	420	920	290	1550	435	2040	610	3750	1050	2500	840	2000	3600


(1Nm ≙ 8.85 in lbs)

BACKLASH-FREE, TORSIONALLY STIFF METAL BELLOWS COUPLINGS

with clamping hub

Properties:

easy to mount

■ low moment of inertia

economically priced

Bellows made of highly flexible high-grade stainless steel. Hub material see table With a single ISO 4762 radial clamping

screw per hub.

Self opening clamp system optional: Loosening the clamping screw applies force to the pin, which will force the clamp into the open position for easy mounting and dismounting.

Temperature range:

-30 to +100° C (-22 F to 212 F)

Speeds:

Up to 10,000 rpm, in excess of 10,000 with

a finely balanced version.

Backlash:

Absolutely backlash-free due to frictional clamped connection.

Brief overloads:

Acceptable up to 1.5 times the value specified.

Service life:

These couplings have an infinite life and are maintenance-free if the technical ratings

are not exceeded.

Tolerance: Non standard: On the hub/shaft connection 0.01 to 0.05 mm.

Custom designs with varied tolerances, keyways, non-standard material, bellows and ATEX designs are available upon request.

Ordering example BKL / 80 / 26 / 22 / XX Model Series/Nm Ø D1 H7 Ø D2 H7 non standard

Madal DVI						Seri	es				
Model BKL		2	4,5	10	15	30	60	80	150	300	500
Rated torque (N	lm) T _{KN}	2	4.5	10	18	30	60	80	150	300	500
Overall length (m	nm) A	30	40	44	58	68	79	92	92	109	114
Outer diameter (m	nm) B	25	32	40	49	56	66	82	82	110	123
Fit length (n	nm) C	10.5	13	13	21.5	26	28	32.5	32.5	41	42.5
Inner diameter possible from Ø to Ø H7 (n	nm) D _{1/2}	4-12.7	6-16	6-24	8-28	10-32	14-35	16-42	19-42	24-60	35-62
Fastening screw ISO 4762		M3	M4	M4	M5	M6	M8	M10	M10	M12	M16
Tightening torque of the fastening screw (N	lm)	2.3	4	4.5	8	15	40	70	85	120	200
Distance between centers (n	nm) F	8	11	14	17	20	23	27	27	39	41
Distance (n	nm) G	4	5	5	6.5	7.5	9.5	11	11	13	17
Moment of inertia (10 ⁻³ kg	m²) J _{total}	0.002	0.007	0.016	0.065	0.12	0.3	0.75	1.8 0.8	7.5 3.1	11.7 4.9
Hub material		AL optional steel	steel optional AL	steel optional AL	steel optional AL						
Approx. weight	kg)	0.02	0.05	0.06	0.16	0.25	0.4	0.7	1.7 0.75	3.8 1.6	4.9 2.1
Torsional stiffness (10 ³ Nm/r	ad) C _T	1.5	7	9	23	31	72	80	141	157	290
axial + ± (n		0.5	1	1	1	1	1.5	2	2	2	2.5
lateral + (m	nm) Max.	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	variation		1 -		1	1					

30

315

50

67

679

44

590

77

axial spring stiffness

112

2940

72

angular

THINKE!

± (degree)

(N/mm)

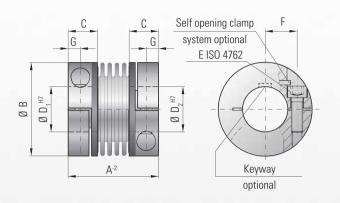
(N/mm)

8

50

35

30


320

BACKLASH-FREE, TORSIONALLY STIFF METAL BELLOWS COUPLINGS

compact version with clamping hub

Properties:

Material:

Design:

■ for high speeds

easy to mount

suited for space restricted installations

■ low moment of inertia

Bellows made of highly flexible high-grade stainless steel. Hub material see table.

With a single ISO 4762 radial clamping

screw per hub.

Self opening clamp system optional: Loosening the clamping screw applies force to the pin, which will force the clamp into the open position for easy mounting and dismounting.

Temperaturerange: Speeds:

-30 to +100° C (-22 F to 212 F)

Standard up to 10,000

Option 1: In excess of 10,000 rpm with a

finely balanced version

Option 2: in excess of 30,000 rpm, with balancing

grade G = 2.5 (see table)

Backlash:

Absolutely backlash-free due to frictional

clamped connection.

Service life:

These couplings have an infinite life and are maintenance-free if the technical ratings

are not exceeded.

Tolerance: Non standard: On the hub/shaft connection 0.01 to 0.05 mm.

Custom designs with varied tolerances, keyways, non-standard material, bellows and ATEX designs

Ordering example BKC / 60 / 26 / 22 / XX Model Series Nm Ø D1 H7 Ø D2 H7 non standard eg. stainless steel

					are available i	ipon request.	
Madal DVC				Ser	ies		
Model BKC		15	30	60	150	300	500
Rated torque (Nm)	T _{KN}	18	30	60	150	300	500
Overall length (mm)	A-2	48	58	67	78	94	100
Outer diameter (mm)	В	49	56	66	82	110	123
Fit length (mm)	С	16.5	21	23	27.5	34	34
Inner diameter possible from Ø to Ø H7 (mm)	D ₁ /D ₂	8-28	12-32	14-35	19-42	24-60	32-75
Fastening screw ISO 4762		M5	M6	M8	M10	M12	M12
Tightening torque of the fastening screw (Nm)	E	8	15	40	75	120	125
Distance between centers (mm)	F	17.5	20	23	27	39	45
Distance (mm)	G	6.5	7.5	9.5	11	13	13
Moment of inertia (10 ⁻³ kgm²)	J_{total}	0.05	0.1	0.26	0.65	6.3	9
Hub material		AL	AL	AL	AL	steel	steel
Approx. weight (kg)		0.13	0.21	0.37	0.72	3.26	3.52
Torsional stiffness (10 ³ Nm/rad)	$C_{\scriptscriptstyle T}$	23	31	72	141	157	290
axial ± (mm)		1	1	1.5	2	2	2.5
lateral ± (mm)	Max. values	0.2	0.2	0.2	0.2	0.2	0.2
angular ± (degree)	values	1	1	1	1	1	1
axial spring stiffness (N/mm)	C _a	30	50	67	77	112	72
lateral spring stiffness (N/mm)	C _r	315	366	679	960	2940	2200
Speed max. with $G = 2.5$ balancing (rpm)		80000	70000	60000	50000	40000	30000

BACKLASH-FREE, TORSIONALLY STIFF METAL BELLOWS COUPLINGS

Keyway A-2 range: optional Speeds:

Ordering example BKM / 20 / 24 / 15 / XX Model Series Nm Ø D1 H7 Ø D2 H7 non standard

(Nm)

(mm)

(mm)

(mm)

(mm)

(Nm)

(mm)

(mm)

(kg)

± (mm)

± (mm)

± (degree)

(N/mm)

(N/mm)

(rpm)

(10-3 kgm2)

(103 Nm/rad)

Tolerance: Series

20

20

40

49

16.5

15-28

M5

8

17

6

0.05

ΑL

0.13

41.9

1

0.06

0.5

55.8

3,710

80000

200

200

59

66

23

24-35

M8

40

23

9,5

0.18

ΑL

0.4

138

1.5

0.08

0.5

153

11,000

60000

400

400

75

82

27.5

32-40

M10

60

27

11

0.62

ΑL

0.7

170

1

0.1

0.5

114

6,058

50000

rigid and compact, with clamping hub

- compact design for high torques
- easy to mount

Properties:

Material:

Design:

- suited for space restricted installations
- low moment of inertia

Bellows made of highly flexible high-grade stainless steel. Hub material see table.

With a single ISO 4762 radial clamping screw per hub. Self opening clamp system optional: Loosening the clamping screw applies force to the pin, which will force the clamp into the open position for easy mounting and dismounting.

-30 to +100° C (-22 F to 212 F)

Standard up to 10.000

Option 1: In excess of 10,000 rpm with a

finely balanced version

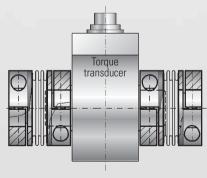
Option 2: in excess of 30,000 rpm, with balancing

grade G = 2.5 (see table)

Absolutely backlash-free due to frictional

clamped connection.

These couplings have an infinite life and are maintenance-free if the technical ratings


are not exceeded.

On the hub/shaft connection 0.01 to 0.05 mm.

Custom designs with varied tolerances, keyways, non-standard material, bellows and ATEX designs are available upon request.

Mounting example

Possible mounting with a torque transducer

smaller bores (D_{1/2}) at reduced torque capacities on request.

40000 (1Nm ≙ 8.85 in lbs)

1210

2

0.1

0.5

148

9,010

Speed max. with

axial spring stiffness

lateral spring stiffness

Model BKM

Overall length coupling

Inner diameter possible from \emptyset to \emptyset H7

Tightening torque of the fastening screw

Moment of inertia

Hub material

Approx. weight

Torsional stiffness

Distance between centers

Fastening screw ISO 4762

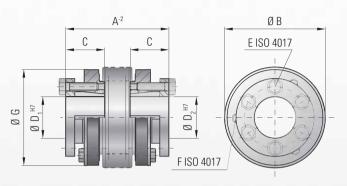
Rated torque

Outer diameter

Fit length

Distance

axial


lateral

angular

BACKLASH-FREE, TORSIONALLY STIFF METAL BELLOWS COUPLINGS

Properties:

Material:

Design:

range:

Speeds:

Temperature

Service life:

Backlash:

■ high clamping forces

high degree of operating depentability

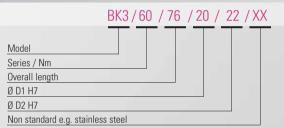
new draw off device suited for space restricted installations

Bellows made of highly flexible high-grade stainless steel, the hub material is steel.

With tapered conical sleeves and strong, captive ISO 4017 draw-off screws.

-30 to +110° C (-22 F to 230 F)

Up to 10,000 rpm, in excess of 10,000 available with a finely balanced version.


These couplings are maintenance-free if the technical ratings are not exceeded.

Absolutely backlash-free due to frictional clamp connection.

Acceptable up to 1.5 times the value specified. On the hub/shaft connection 0.01 to 0.05 mm

Custom designs with varied tolerances, keyways, non-standard material, bellows and ATEX designs are available upon request.

Ordering example

Brief overloads: Tolerance: Non-standard application:

MA LIBYO													Ser	ies						
Model BK 3		1!	5	3	0	6	0	15	50	20	00	30		50	00	800	1500	4000	6000	10000
Rated torque (Nm)	T _{KN}	15	5	3	0	6	0	15	50	20	00	30	00	50	00	800	1500	4000	6000	10000
Overall length (mm)		48	55	57	65	66	76	75	87	78	90	89	103	97	110	114	141	195	210	217
Outer diameter of bellows (mm)	В	49	9	5	5	6	6	8	1	9	0	11	10	12	24	133	157	200	253	303
Fit length (mm)		19	9	2	2	2	7	3	2	3	2	4	11	4	1	50	61	80	85	92
Inner diameter from Ø to Ø H7 (mm)	D ₁ /D ₂	10-2	22	12	-23	12-	29	15-	-38	15-	-44	24	-56	24	-60	30-60	35-70	50-100	60-140	70-180
Fastening screws ISO 4017		6x N	V14	6x	M5	6x l	M5	6x	M6	6x	M6	6x	M8	6x	M8	6x M10	6x M12	6x M16	6x M16	8x M16
Tightening torque of the fastening screws (Nm)		4		(6	8	}	1	2	1	4	1	8	2	5	40	70	120	150	160
Draw-off screw 3x ISO 4017		3x N	V14	3x	M4	3x l	M5	3x	M5	3x	M6	3x	M6	3x	M6	3x M8	6xM8	6xM10	6xM10	8xM10
Outer diameter of hub (mm)	G	49	9	5	5	6	6	8	1	9	0	11	10	12	22	116	135	180	246	295
Moment of inertia (10 ⁻³ kgm ²)	J_{total}	0.07	0.08	0.15	0.16	0.39	0.41	1.2	1.6	1.7	2.5	5.1	5.9	9.1	9.9	13.2	34.9	85.5	254	629
Approx. weight (kg)		0.2	25	0	.4	0.	8	1.	2	1.	.8	3	3	4	.2	5.6	8.2	23	32.6	45.5
Torsional stiffness (10 3 Nm/rad)	$\mathbf{C}_{_{\mathrm{T}}}$	20	15	39	28	76	55	175	110	191	140	450	350	510	500	780	1304	3400	5700	10950
axial ± (mm)		1	2	1	2	1.5	2	2	3	2	3	2.5	3.5	2.5	3.5	3.5	3.5	3.5	3	3
lateral \pm (mm)	Max. values	0.15	0.2	0.2	0.25	0.2	0.25	0.2	0.25	0.25	0.3	0.25	0.3	0.3	0.35	0.35	0.35	0.4	0.4	0.4
angular ± (degree)		1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1.5	1.5	1.5	1.5	1.5
axial spring stiffness (N/mm)	C _a	25	15	50	30	72	48	82	52	90	60	105	71	70	48	100	320	565	1030	985
lateral spring stiffness (N/mm)	C _r	475	137	900	270	1200	420	1500	435	2040	610	3750	1050	2500	840	2000	3600	6070	19200	21800

(1Nm \(\) 8.85 in lbs)

www.rw-america.com R+W

BACKLASH-FREE, TORSIONALLY STIFF METAL BELLOWS COUPLINGS

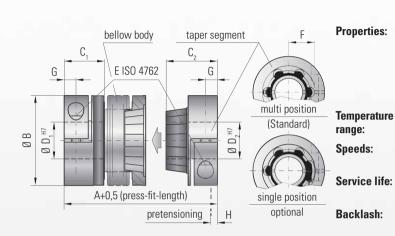
Press-fit, with clamping hub

Design details BK 5 / BK 6

- absolutely backlash-free and torsionally rigid
- easy mounting and dismounting
- electrically and thermally insulated
- wear-free and maintenance-free
- low moment of inertia
- compensation for misalignment

-30 to +110° C (-22 F to 230 F)

Up to 10,000 rpm, over 10,000 rpm available with a finely balanced version.


These couplings have an infinite life and are maintenance-free if the technical ratings are not exceeded.

Absolutely backlash-free due to frictional clamp connection and axial pretensioning of the tapered press-fit segments.

Acceptable up to 1.5 times the value specified. On the hub/shaft connection 0.01 to 0.05 mm

Bellows made of highly flexible, high-grade stainless steel; clamping hubs up to series 80 aluminium, and 150 and up steel. Tapered segment on hub face: glass-fiber reinforced plastic molded onto an aluminium hub.

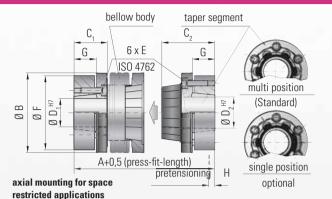
One side with a single radial clamping screw ISO 4762. One side includes backlash-free clamping hub and tapered press-fit device. Any imbalance of the clamping hub, is compensated with balancing bores located on the inside of the hub.

Brief overloads: Tolerance: Material BK 5:

Design BK 5:

	DVF / 00 / 71 / 10 / 10 / VV
	BK5 / 30 / 71 / 18 / 19 / XX
Model	
Series / Nm	
Overall length	
Ø D1 H7	
Ø D2 H7	

Madal DV F										Ser	ies						
Model BK 5		1	5	3	0	6	0	8	0	15	50	30	00	50	00	800	1500
Rated toque (Nm	T _{KN}	1	5	3	0	6	0	8	0	15	50	30	00	50	00	800	1500
Overall length (inserted) (mm	A+0,5	60	67	71	79	85	95	94	106	95	107	114	128	136	149	150	172
Outer diameter (mm	В	4	9	5	5	6	6	8	1	8	1	11	10	12	24	133	157
Fit length (mm	C,	2	2	2	7	3	2	3	6	3	6	4	3	5	1	45	55
Fit length (mm	C_2	2	8	3	3	3	9	4	3	4	3	5	2	6	1	74	94
Inner diameter from from Ø to Ø H7 (mm	D ₁	8-	28	10-	-30	12-	-32	14-	-42	14-	-42	24-	-60	35-	-60	40-75	50-80
Inner diameter from from Ø to Ø H7 (mm	D ₂	8-:	22	10-	-25	12-	-32	14-	-38	14-	-38	24-	-58	35-	-60	40-62	50-75
Fastening screw ISO 4762	F	N	15	N	16	N	18	М	10	М	10	М	12	М	16	2xM16*	2xM20*
Tightening torque (Nm		{	3	1	5	4	0	5	0	7	0	13	30	20	00	250	470
Distance between centers (mm	F	1	7	1	9	2	3	2	7	2	7	3	9	4	1	2x48*	2x55*
Distance (mm	G	6	.5	7.	.5	9	.5	1	1	1	1	1	3	16	6.5	18	22.5
Pretensioning approx. (mm		0.2 up	to 1.0	0.5 up	to 1.0	0.5 up	to 1.5	1.0 up	to 2.0	1.0 up to 2.5	0.5 up to 1.5						
Axial recovery force of coupling max. (N	Н	20	12	50	30	70	45	48	32	82	52	157	106	140	96	200	650
Mass moment of inertia (10 ⁻³ kgm ²	J	0.07	0.08	0.14	0.15	0.23	0.26	0.65	0.67	2.2	2.4	7.4	7.9	13.7	14.4	26.2	51.4
Approx. weight (kg		0.1	0.1	0.3	0.3	0.4	0.4	0.9	0.9	1.8	1.8	4	4	6.5	6.7	8.2	15.3
Torsional stiffness (10 3 Nm/rad	C_{T}	10	8	20	14	38	28	65	43	88	55	225	175	255	245	400	650
axial* ± (mm		0.5	1	0.5	1	0.5	1	1	2	1	2	1.5	2	2.5	3.5	3	2
lateral ± (mm	Max. values	0.15	0.2	0.2	0.25	0.2	0.25	0.2	0.25	0.2	0.25	0.25	0.3	0.3	0.35	0.35	0.35
angular ± (degree		1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1.5	1.5
Lateral spring stiffness (N/mm	C _r	475	137	900	270	1200	420	920	290	1550	435	3750	1050	2500	840	2000	3600

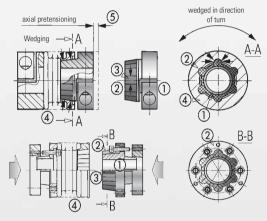

^{*} allowed following maximum pretensioning

^{*} two screws each hub, 180° apart Higher torques on request

BACKLASH-FREE, TORSIONALLY STIFF METAL BELLOWS COUPLINGS

Press-fit, with conical sleeve

Material BK 6: Bello


Design BK 6:

Bellows made of highly flexible, high-grade stainless steel; conical sleeves and tapered segment on bellows face are made of steel.

Tapered segment on hub face: glass-fiber rein forced plastic molded onto a steel hub.

One side concial sleeve with 6 fastening screws ISO 4762 and 3 draw-off threads. One side with backlash-free tapered concial sleeve with pressfit connection and 3 draw-off screws

Design details BK 5 / BK 6

Due to the press-fit design the complete drive unit can be simply pulled away when servicing is required.

Six self-centering, tapered drive projections (2) have been formed into the plastic conical element, which has been molded onto an aluminium hub (1). The six axially arranged projections are configured conically in a longitudinal direction (3). The mating piece consits of a metal bellows with a tapered female mounting element (4). Absolutely backlash-free torque transmission is ensured due to the axial pretensioning (5) of the metal bellows during its mounting. This slight pretensioning has no negative influence on the operation of the metal bellows coupling or of the shaft bearing.

Material description of the plastic segment:

This is a glass-fiber reinforced plastic of the duromer group. With a glass-fiber content of 65% it achives a strength and rigidity roughly that of steel.

Madal DV C									Ser	ries					
Model BK 6		1	5	3	0	6	0	1!	50	30	00	50	00	800	1500
Rated torque (Nm)	T _{KN}	1	5	3	0	6	0	15	50	30	00	50	00	800	1500
Overall length (inserted) (mm)	A+0,5	58	65	68	76	79	89	97	109	113	127	132	145	140	158
Outer diameter (mm)	В	4	9	5	5	6	6	8	1	1	10	1:	24	133	157
Fit length (mm)	C,	13	.5	16	6.5	1	8	23	1.5	2	7	3	2	42	53
Fit length (mm)	$C_{_2}$	2	9	3	4	3	19	49	1.5	5	9	6	8	74	90.5
Inner diameter from Ø to Ø H7 (mm)	D,	10-	22	12	-24	12	-32	15	-40	24	-56	30	-60	40-62	50-75
Inner diameter from Ø to Ø H7 (mm)	D ₂	10-	-22	12	-24	12	-32	15	-40	24	-56	30	-60	40-62	50-75
Fastening screw ISO 4762	Е	M	14	N	15	N	15	N	16	N	18	N	18	M10	M12
Tightening torque (Nm)		3.	5	6	.5	1	В	1	2	3	0	3	2	55	110
Diameter of clamping cone (mm)	F	46	.5	5	1	6	0	7	4	10)2	1	14	126	146
Konuslänge (mm)	G	9.	5	10).5	11	1.5	17	'.5	2	0	2	3	27	32
Pretensioning approx. (mm)		0.2 up	to 1.0	0.5 up	to 1.0	0.5 up	to 1.5	0.5 up	to 1.5	0.5 up	to 1.5	1.0 up	to 2.0	1.0 up to 2.0	0.5 up to 1.5
Axial recovery force of coupling max. (N)		20	12	50	30	70	45	82	52	157	106	140	96	400	650
Moment of inertia (10 ⁻³ kgm ²)	J	0.1	0.12	0.2	0.25	0.4	0.45	2.0	2.5	5.4	6.1	8.4	9.1	19.5	44
Approx. weight (kg)		0.3	0.32	0.5	0.52	0.82	0.84	1.6	1.7	4.1	4.2	6.0	6.3	9.4	16.2
Torsional stiffness (10 3 Nm/rad)	C_{\scriptscriptstyleT}	10	8	20	14	38	28	88	55	225	175	255	245	400	660
axial* ± (mm)		0.5	1	0.5	1	0.5	1	1	2	1.5	2	2.5	3.5	3	2
lateral ± (mm)	Max. values	0.15	0.2	0.2	0.25	0.2	0.25	0.2	0.25	0.25	0.3	0.3	0.35	0.35	0.35
angular ± (degree)	- raidos	1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1.5	1.5
Lateral spring stiffness (N/mm)	C,	475	137	900	270	1200	420	1550	435	3750	1050	2500	840	2000	3600

(1Nm ≙ 8.85 in lbs)

Higher torques on request.

www.rw-america.com R+W 1

^{*} allowed following maximum pretensioning

BACKLASH-FREE, TORSIONALLY STIFF METAL BELLOWS COUPLINGS

	-	A-2	
E ISO 4017	C	H	
F ISO 4017		1.10 K	Fanuc Motor

Properties:

Material:

for conical shafts

easy mounting and dismounting

■ high degree of operating dependability

Bellows made of highly flexible high-grade

stainless steel, the hub material is steel.

Design: Spindle-side:

With conical sleeve and strong captive

ISO 4017 draw-off screws

Motor-side:

Conical hub 1: 10 and a keyway.

Temperature range:

-30 to +110° C (-22 F to 230 F)

Speeds:

Up to 10,000 rpm, over 10,000 rpm available

with a finely balanced version.

Service life:

These couplings are maintenance-free if the

technical ratings are not exceeded.

Backlash:

Absolutely backlash-free due to frictional

clamp connection.

Brief overloads:

Acceptable up to 1.5 times the value specified.

Tolerance:

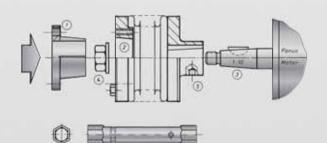
On the hub/shaft connection 0.01 to 0.05 mm

Custom Designs:

Custom designs with varied tolerances, keyways, non-standard material, bellows and ATEX designs

are available upon request.

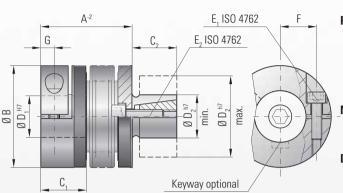
Ordering example BK4/150 / 82 / 20 / XX Model Series / Nm Overall length Ø D H7 Non standard e.g. stainless steel


Model BK 4						Sei	ries			
Widuel DK 4			1	5	3	0	6	0	-1!	50
Rated torque	(Nm)	T _{KN}	1	5	3	0	6	0	15	50
Overall length	(mm)	A-2	47	54	68	76	72	82	82	94
Outer diameter of bellows	(mm)	В	4	9	5	5	6	6	8	31
Fit length	(mm)	С	1	9	2	2	2	7	3	12
Inner diameter from Ø to Ø H7	(mm)	D	10-	-22	12	-23	12	-29	15	-37
Fastening screws 6x ISO 4017			N	14	Ν	15	Ν	15	Ν	16
Tightening torque of the fastening screws	(Nm)	E	4	1	(6	8	3	1	2
Draw-off screw 3x ISO 4017		F	N	14	N	14	Ν	15	Ν	15
Shaft diameter	(mm)	G	2	0	2	7	3	0	3	80
Shaft length	(mm)	Н	8.	.5	2	2	1	8	2	20
Moment of inertia (10 ⁻³	kgm²)	$J_{\scriptscriptstyle total}$	0.10	0.12	0.22	0.27	0.58	0.61	1.1	1.4
Approx. weight	(kg)		0.3	25	0	.4	0	.8	1.	35
Torsional stiffness (10 3 Nr	m/rad)	$C_{_{T}}$	20	15	39	28	76	55	175	110
axial ++++++++++++++++++++++++++++++++++++	(mm)		1	2	1	2	1.5	2	2	3
lateral ±	(mm)	Max. values	0.15	0.2	0.2	0.25	0.2	0.25	0.2	0.25
angular ± (d	egree)	values	1	1.5	1	1.5	1	1.5	1	1.5
axial spring stiffness (N	V/mm)	C _a	25	15	50	30	72	48	82	52
lateral spring stiffness (N	V/mm)	C,	475	137	900	270	1200	420	1500	435
cone Ø (Fanuc Motor)	(mm)	1	1	1	1	6	1	6	1	6
Keyway width	(mm)	K	7	1	į	5	į	5	į	5

Technical instructions:

Before mounting the coupling, the concial sleeve (1) has to be removed. After sliding the coupling on to the motor shaft (3) the nut (4) can be put on through the bellows body (4).

To tighten the nut a special DIN 896 B key is used. The bore (5) is used for holding the coupling while tightening the nut.


Key DIN 896 B

Ordering example

MODEL BK7

BACKLASH-FREE, TORSIONALLY STIFF METAL BELLOWS COUPLINGS

Properties:

Material:

Design:

Temperature range:

Speeds:

Service life:

Backlash:

Brief overloads:

Tolerance:

Custom Designs:

with expanding shaft

- compact design, conserves space while saving cost
- easy mounting
- backlash-free and torsionally rigid
- low moment of inertia
- compensation for misalignment

Bellows made of highly flexible high-grade stainless steel, hub material: see table, Expanding hub and cone (steel).

On one side with a single radial clamping screw ISO 4762. On one side an expanding shaft with tapered clamping element.

-30 to +110° C (-22 F to 230 F)

Up to 10,000 rpm, over 10,000 rpm available with a finely balanced version.

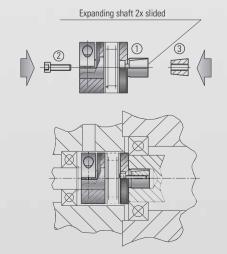
These couplings have an infinite life and are maintenance-free if the technical ratings are not exceeded.

Absolutely backlash-free due to frictional clamp connection.

Acceptable up to 1.5 times the value specified.

On the hub/shaft connection 0.01 to 0.05 mm

Custom designs with varied tolerances, keyways, non-standard material, bellows and ATEX designs are available upon request.

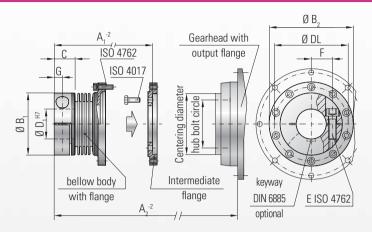

	DR7 / 100 / 71 / 02 / 00 / 700
Model	
Series / Nm	
Overall length	
Ø D1 H7	
Ø D2 h7	
non standard	

BK7 /150 / 71 / 32 / 35 / XX

Madal DV 7		Series									
Model BK 7	15		30		60		150		300		
Rated toque (Nm)	T _{KN}	15		30		60		150		300	
Overall length (inserted)(mm)	A-2	45	52	53	61	62	72	71	83	84	98
Outer diameter (mm)	В	49		55		66		81		110	
Fit length (mm)	C,	22		27		32		36		43	
Fit length (mm)	$C_{_2}$	20		25		27		32		45	
Inner diameter from Ø to Ø H7 (mm)	D ₁	8-28		10-30		12-35		19-42		30-60	
Shaft diameter from Ø to Ø h7 (mm)	D ₂	13-25		14	14-30 23		-38	26-42		38-60	
Fastening screw ISO 4762 E _{1/2}		M5		M6		M8		M10		M12	
Tightening torque of the fastening screw (Nm)	E,,	8		1	4	38		65		120	
Distance between centers (mm)		17		19		23		27		39	
Distance (mm)	G	6	.5	7.5		9.5		11		13	
Moment of inertia (10 ⁻³ kgm ²)	J _{total}	0.07	0.08	0.14	0.15	0.23	0.26	2.2	2.4	6.5	8.9
Hub material (standard) (steel on request)		AI		Al		Al		steel		steel	
Approx. weight (kg)		0.15		0.3		0.4		1.7		4	
Torsional stiffness (10 3 Nm/rad)	$C_{_{T}}$	20	15	39	28	76	55	175	110	450	350
axial + ± (mm)		1	2	1	2	1.5	2	2	3	2.5	3.5
lateral ⊕ ± (mm)	Max. values	0.15	0.2	0.2	0.25	0.2	0.25	0.2	0.25	0.25	0.3
angular #### ± (degree)	values	1	1.5	1	1.5	1	1.5	1	1.5	1	1.5
axial spring stiffness (N/mm)	C _a	20	12	50	30	72	48	82	52	105	71
lateral spring stiffness (N/mm)		315	108	730	230	1200	380	1550	435	3750	1050

Installation instructions:

By tightening the screw through the bellow body, the shaft is caused to expand. The coupling is designed for high dynamic hollow shaft connections eg. gear boxes. Recommended bore tolerance: ISO H7



15

(1Nm ≙ 8.85 in lbs)

BACKLASH-FREE, TORSIONALLY STIFF METAL BELLOWS COUPLINGS

Properties:

Material:

Design:

Speed: **Temperature** range: Fit tolerance:

Non standard:

Flange mounting

- zero backlash and high torsional rigidity
- easy assembly
- suited for space restricted installations
- compact design

The hubs are made of aluminium, series 300 and 1500 made of steel. Bellows are made of highly flexible, high-grade stainless steel. Intermediate flange made of steel (standard).

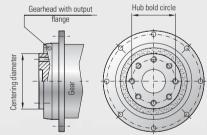
One side with a clamping hub and a single radial clamping screw ISO 4762.

One side with a flange-connection and a seperate intermediate flange.

Up to 10,000 rpm.

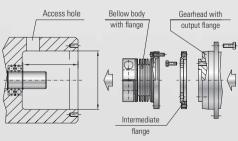
-30 to +110° C (-22 F to 220 F)

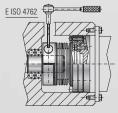
Gearhead with output flange


On the hub/shaft connection 0.01 to 0.05 mm.

Custom designs with varied tolerances, keyways, non-standard material and bellows are available upon request.

Ordering example




Gearhead with output flange

The bolt circle will be drilled acc. to the gear head

Mounting and dismounting

BA - I - I DV (Series								
Model BK 8	5		15	60	150	300	1500				
Flange centering diameter	(mm)		40 h7	63 h7	80 h7	100 h7	160 h7				
Flange bolt circle / thread Ø	(mm)		31.5 8x M5	50 8x M6	63 12x M6	80 12x M8	125 12x M10				
Max. torque*	(Nm)		50	210	380	750	2600				
Length -2	(mm)	Α	48.5	67	72	90	140				
Length -2	(mm)	A ₁	68	97	101	128	190				
Outher diameter	(mm)	В	49	66	82	110	157				
Flange diameter	(Nm)	B ₁	63.5	86	108	132	188				
Fit length	(mm)	С	16.5	23	27.5	34	55				
Inner diameter possible from Ø to Ø H7	e (mm)	D	12-28	14-35	19-42	24-60	50-80				
Hub bolt circle	(mm)	DL	56.5	76	97	120	170				
Fastening threads		DL	10 x M4	10 x M5	10 x M6	12 x M6	16 x M8				
Fastening screws ISO 4762		Е	1 x M5	1 x M8	1 x M10	1 x M12	2 x M20				
Tightening torque	(Nm)		8	45	80	120	470				
Distance	(mm)	F	1 x 17.5	1 x 23	1 x 27	1 x 39	2 x 55				
Distance	(mm)	G	6.5	9.5	11	13	22.5				
Approx. weight	(kg)		0.3	0.7	1	2.8	10				
Moment of inertia (1	0 ⁻³ kgm ²)	J _{ges}	0.15	0.65	1.3	5.5	45				
Lateral -	± (mm)		0.25	0.25	0.25	0.25	0.25				
Angular ++++++++++	(degree)	Max. value	1	1	1	1	1				
Axial -	± (mm)	value	1	1.5	2	2.5	3				

^{*}max. torque transmittable for a short-therm period on max. diameter (D).

MODELL ATEX

FOR USE IN HAZARDOUS AREAS AND EXPLOSIVE ATMOSPHERE

The ATEX 95a is regulated by the new European directive. Generally the explosive atmosphere is classified in 3 different zones.

Zone 0:

A place in which an explosive atmosphere consists of a mixture of air and flammable substances in the form of gas, vapor or mist and is present frequently, continuously or for extended periods.

70ne 20

Is relevant for an explosive atmosphere in the form of clouds of combustible dust in air under the same conditions as above.

7one 1:

Described as a place in which an explosive atmosphere consists of a mixture of air with flammable substances in the form of gas, vapor or mist, and is likely to occur in normal operation occasionally.

Zone 21:

Is relevant for an explosive atmosphere in the form of clouds of combustible dust in air under the same conditions as above.

Zone 2:

A place in which an explosive atmosphere consists of a mixture of air with flammable substances in the form of gas, vapor or mist and is not likely to occur in normal operation but, if it does occur, it will persist for only a short period.

Zone 22:

Relevant for an explosive atmosphere in the form of a cloud of combustible dust in air under the same conditions as above.

For the classified zones 1/21 and 2/22 the metal bellows couplings BK-EEX do have an accreditation according to ATEX 95a

Mounting, Design:

Installation and Operation instructions:

For security reasons all misalignment values and torque ratings are decreased by 20%

AT mosphere EX plosible

Installation and operating instructions are an essential part of the BK-EEx metal bellows couplings.

Including the following facts:

- Design of the BK EEx metal bellows couplings
- Exact tightening torques and misalignment values
- How to put in operation
- Maintenace intervals
- Trouble shooting
- Marking of the coupling
- Declaration of conformity

All BK-EEx couplings are permanent labeled to display manufacturer and accreditation data.

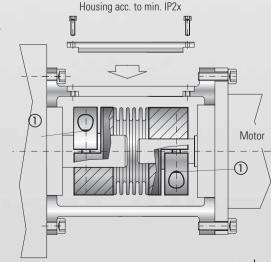
Example Accreditation data:

Identification:

Type: BKL 150 EEx-2003 II 2 G D EEx cT4/135°C Ser.No.: A 44305 Tech.Ref.No.:2003/003RW

Assembling the BK-EEX metal bellows couplings

The coupling cross section is insulated throughout the outside under the use of a flange or cover plate. The cover has to be electrical conductive.


Min. sealing according to IP2X

Tolerance: On the hub/shaft connection must be within 0,01-0,05 mm

Assembling: To ensure a safe clamping, the tightening torque rates of the clamping screws (1) must be noticed at any time.

ATTENTION

A permanent observation of the driving and driven side must be ensured. A shut off must follow right afterwards.

www.rw-america.com R+W | 1

THE SELECTION

THE SELECTION PROCESS FOR TORSIONALLY RIGID METAL BELLOWS COUPLINGS

According to Torque

In most cases couplings are rated according to the peak torque to be regularly transmitted.

The peak torque may not exceed the rated torque of the coupling.

By rated torque we mean: the torque that is continuously transmittable within the specified acceptable speed and misalignment ranges.

The following calculation has proven itself to be a good rule of thumb:

$$T_{KN} \ge 1.5 \cdot T_{AS}$$
 (Nm)

 T_{KN} = rated torque of coupling (Nm)

 T_{AS} = peak torque uf motor (Nm)

According to Acceleration Torques

For precise rating, the acceleration torque and moments of inertia of the entire machine have to be taken into consideration.

In the case of servo motors ensure that their acceleration or deceleration torque is greater than their torque by a multiple.

 S_{A} = Shock or load factor

 $S_{\Delta} = 1$ (uniform load)

 $S_{\Lambda} = 2$ (non-uniform load)

 $S_A = 3-4$ (Shocking load)

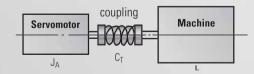
Values for $S_{\Delta} = 2-3$ are usual for servo drives on machine tools.

$$T_{KN} \ge T_{AS} \cdot S_A \cdot \frac{J_L}{J_A + J_L}$$
 (Nm)

 T_{KN} = rated torque of coupling (Nm)

 T_{AS} = max. acceleration torque on the on the driving element (Nm)

- or max. deceleration torque of the (Nm)


J_L = maschine moment of inertia (kgm²) (Spindle + slide + workpiece+ half of coupling)

 J_{Δ} = motor's moment of inertia (kgm²)

According to Resonace Frequency

For the mech. substitutional model of the 2-mass-system the following is valid:

2-mass-system

As a value of practise the following is valid: $f_a \ge 2 \times f_a$

$$f_{e} = \frac{1}{2 \cdot \pi} - \sqrt{C_{T} \cdot \frac{J_{A} + J_{L}}{J_{A} \cdot J_{L}}} \quad (Hz)$$

 C_{τ} = torsional stiffness of the coupling (Nm/rad)

 f_e = mechanical resonance frequency of the (Hz) 2 mass system

 f_{or} = mechanical frequency of the drive (Hz)

According to Torsional Stiffness

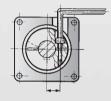
Transmission errors due to the torsional load:

$$\phi = \frac{180}{\pi} \cdot \frac{T_{AS}}{C_T} \quad \text{(degrees)}$$

 ϕ = Torsional deflection (degrees)

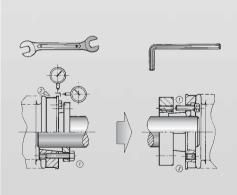
 C_{τ} = torsional stiffness of coupling (Nm/rad)

 $T_{AS} = max. torque$ (Nm)


INSTALLATION INSTRUCTIONS

SERIES BK

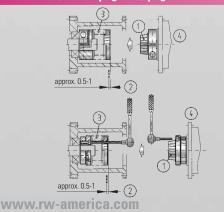
Misalignments lateral axial angular


- When mounting the coupling ensure that the metal bellows has not been damaged or bent.
- During mounting, the torque and axis misalignments may exceed 2 times the rating without the performance of the coupling being effected.
- However, for continuous operation, the axial and lateral misalignments specified in the catalog must not be exceeded. Only then will the coupling provide infinite performance.
- Lateral axis misalignment requires special attention (see table values).
- In the case of models BK 2/3/4/5/6 the tolerance between shaft/hub connection must not exceed 0.01 and 0.05 mm.
- Prior to mounting check for smooth running of the coupling hub on the shaft.
- Prior to mounting, make sure that the shaft is slightly oiled. Shaft keyways have no effect upon the function of the clamp connection.

Model BK 2 / BK 5 page 6 / page 10

- The torque values of the fastening screws must be precisely applied in order to ensure secure clamping of the hubs.
- The dimensions for application of the coupling bolt access hole can be found under "F" and "G" in the table.
- No additional securing of the screw is necessary. Loosening of the fastening screws is sufficent to dismount the coupling.

Model BK 3 / BK 4 / BK 6 page 8 / page 9 / page 11



- It is absolutely essential that the fastening screws (1) are evenly tightened.
- Perform tightening of the fastening screws crosswise in order to avoid any distortion of the coupling hubs.
- Extraction of the tapered bushings for repair purposes is possible by means of 3x captive hexagonal draw-off screws (2).
- When dismounting assure during draw off that consistent unscrewing of the 3x hexagon screws is maintained.

The alignment surfaces on the outer faces of the hubs are for the purpose of checking hub distortion during mounting and for retromeasurement of shaft misalignment.

Caution! An increase of tension on the tapered bushings is still achievable even after the screws have been tightened several times crosswise (max.3 times). This must be avoided without fail, otherwise destruction of the clamp connection may result.

Model BK 5 / BK 6 page 10 / page 11

- The press-fit couplings do not need access holes on the intermediate flange. Model BK 6 will be mounted axially.
- The six axially arranged projections (1) are configured conically in a longtitudinal direction. Due to this an axial pretensioning (2) is needed.

The metal bellows (3) is used as a spring

■ Please maintain the pretensioning values which are printed in the table (page 8 + 9)

Caution! When mounting the drive unit the pretensioning must be achieved.

Experience and Know-how for your special requirements.

R+W America 1120 Tower Lane Bensenville, IL 60106

Phone: 630-521-9911 Fax: 630-521-0366

info@rw-america.com www.rw-america.com

QUALITY MANAGEMENT We are certified according to ISO 9001-200

TGA-ZM-05-91-00 Registration No. 9605022

The information mentioned in this document is based on our present knowledge and experiences and does not exclude the manufacturer's own substantial testing of the equipment. So this is no obligatry assurance even with regard to protection rights of Third Parties. The sale of our products is subject to our General Conditions of Sale and Delivery.

THE R+W-PRODUCT RANGE

TORQUE LIMITERS Series SK

From 0.1 – 2,800 Nm, Bore diameters 3 – 100 mm Available as a single position, multi-position, load holding, or full disengagement version Single piece or press-fit design

BELLOWS COUPLINGS Series BK

From 2 - 10,000 Nm Bore diameters 10 - 180 mm Single piece or press-fit design

LINE SHAFTS Series ZA/ZAE

From 10 – 4,000 Nm Bore diameters 10 – 100 mm Available up to 6 mtr. length


MINIATURE BELLOWS COUPLINGS Series MK

From 0.05 - 10 NmBore diameters 1 - 28 mmSingle piece or press-fit design

SERVOMAX® ELASTOMER COUPLINGS Series EK

From 5-2,000 Nm, Shaft diameters 3-80 mm backlash-free, press-fit design

ECOLIGHT® ELASTOMER COUPLINGS Series TX 1

From 2 – 810 Nm Shaft diameters 3 – 45 mm

LINEAR COUPLINGS Series LK

From 70 - 2,000 NThread M5 - M16

POLYAMID COUPLINGS MICROFLEX Series FK 1

Rated torque 1 Ncm Bore diameters 1 – 1.5 mm