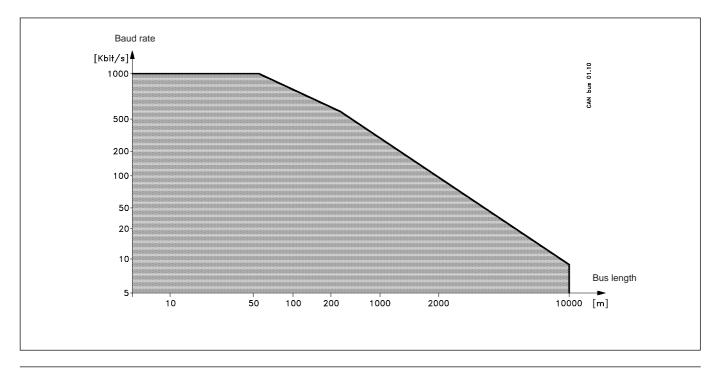

CAN bus components

Introduction

HN.50.Y1.02 is new


CAN communication

CAN communication is best understood in the following way:

Instead of sending a message from component A to unit B, it is broadcast. Each component, a PVG CIP for example, is then able to listen in and col-lect information relevant to it selv. The message format is designated COB (Communication Object), which applies to all messages.

A COB has an identification code (COB-ID) that makes it possible for a component, a PVG CIP for example, to sort and prioritise transmitted communication objects (COBs). The COB-ID clearly identifies the COB in a network. CAN communication works on the prioritising of messages, thus CAN uses familiar and established methods such as CSMA/CA (Carrier Sense, Multiple Access with Collision Avoidance) with improved capability to avoid collision (non-destructive bit arbitration). This means that the message with the lowest identification code will have access to the bus before other messages, ensuring that the capacity of the bus can be utilised to the maximum.

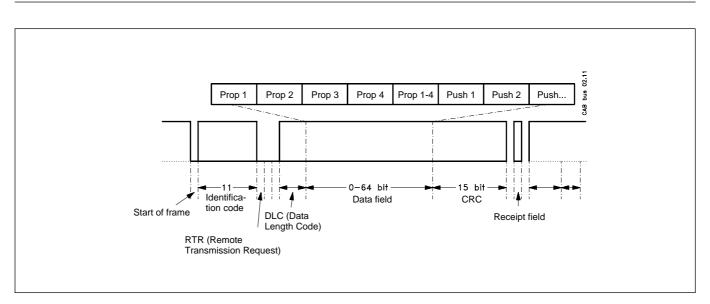
The speed of the bus is limited by its length, see below.

CANopen

CAN components communicate using a protocol. A protocol can be compared to a language. The different protocols on the market are adapted to the applications in which they are used.

The CANopen protocol is particularly suitable for mobile applications. There are many suppliers on the market whose products work together with CANopen, therefore it is easy to put together a comprehensive CANopen system.

CANopen uses objects for communication. The most common are:


Service Data Object(SDO)

SDOs transfer large amounts of information that is not time-critical eg setting-up parameters.

Process Data Object (PDO)

PDOs are used to transfer data that are timecritical. For example, joysticks transfer signals via PDOs. *NMT is a special part that handles emergency situations and other network administration.* Via an emergency object, the individual nodes (components) are able to send a warning of emergency situations. In this way, other CAN-open components are able to identify the node point from which the emergency call was sent.

CANopen specifies an Object Dictionary (OD) that describes all parameters in the product. This OD does not function solely as a specification file, but also as an interface with other CANopen devices. In other words, a description is given detailing which parameters are necessary to activate the different functions the product can perform.

The example above shows the structure of a joystick COB.

- 1. A COB is started by sending a 0 (start of frame).
- 2. An identification code (COB-ID) is sent and through bit arbitration the message having the lowest bit identification code is allowed to continue.
- 3. RTR (Remote Transmission Request) specifies whether the sender wishes to receive or send data to the message receiver.
- 4. DLC specifies the length of the data field.
- 5. The data field contains information on, for example, joystick data. 6. The CRC field is used as a safety control
- for finding bit error.
- 7. The receipt field is a position in which all other components acknowledge receiving a message.

Danfoss CAN concept	 CAN components supplied by Danfoss can be identified from the abbreviation CIP (CAN Interfaced Product). We supply the following: PVG CIP Prof 1 CIP CIP Configuration Tool Our objective is to supply CAN components which are not only capable of communicating with our own products, but also with other 	standard available components. There are many suppliers of CANopen components on the market and therefore it is simple, inexpen- sive and very flexible to set up a comprehensi- ve system. The CIP Configuration Tool is designed to guide hydraulic system designers/ service technicians through system setup.
Prof 1 CIP	The Prof 1 CIP joystick is available in many mechanical configurations. To simplify the way in which this information is shown in the COB, the maximum configuration possibilities are always built in. Depending on the actual configuration of the joystick, some of the fields for proportional or on/off signals contain no information. The joystick sends information on the first PDO (Process Data Object). As standard, it sends cyclically at $T_c = 10$ ms. The Emergency Object is used if a fault arises in the joystick. Prof 1 CIP can be ordered as described in Tech Note HN.50.Z3 Joystick Prof 1. New modules for Prof 1 CIP are shown in the table below.	 Prof 1 CIP contains new functions often requested in hydraulic systems: <i>Joystick guide (x - y interlook)</i> This function ensures that only the first proportional signal activated from the control lever is sent (prop 1 or prop 2). <i>Memory function</i> This function makes it possible for the user to hold a proportional function by pressing a selected memory button (on/off) in the joystick. The associated proportional signal can be deactivated by pressing the memory button again or by activating the proportional function.

Name	Code no. 162B	Pos. no. in code no. list	Description
Cable	6100	6	Length 230 mm with AMP 282404-1, male plug AMP 282107-1, tab house
Main function module with electronics	5100	5	CAN electronics

PVG CIP

PVG CIP is designed to control up to eight sections equipped with PVEO, PVEM, PVEH or PVES, and versions with float position control.
PVG CIP is able to receive COBs sent in joystick format from four joysticks or other sources. The joystick signals are distributed to the PVEs in relation to the actual setup. The CAN signals are converted to proportional or on/off values on the output pins of the module.
PVG CIP contains functions often used in

- Two different ramps (principle 1 from EH boxes)
- Flow limitation
- Deadband compensation
- Gain
- Software tuning of spool characteristics
- Spool float position control
- Power saving
- Service and diagnosing
- Softwiring

PVG CIP must be ordered as a separate component with code number as follows.

Name	Code no. 155U	Description		
PVG CIP	5660	With AMP plug 1-967280-1, male plug		

hydraulic systems:

CIP Configuration Tool

The CIP Configuration Tool is a program developed for setting up systems consisting of PVG CIP and Prof 1 CIP.

Name	Code no. 155U	Description
CIP Configuration Tool	5670	Product contents
		CIP Configuration Tool
		CIP Downloading Utility
		CANview
		CAN dongle
		Documentation, examples, help files

Technical data

Common to PVG CIP & Prof 1 CIP

Power supply

Supply voltage	U _{dc}	10 - 30 V DC
Max. supply voltage		36 V DC
Max. pulsation (peak to peak)		5%

CAN interface - ISO 11898 ver. 2.0 B

Baud rate	10 Kbit/s - 1000 Kbit/s
Communication profile	CANopen ver. 3.0
Typical start-up time	< 500 ms
CAN	Full CAN

EMC - EMC Directive (89/336/ECC)

Emission	EN 50081-2
Immunity	EN 50082-2
HF immunity	ISO 14892 (60 V/m, 20 MHz - 1000 MHz)
	ISO 13766 (60 V/m, 20 MHz - 1000 MHz)

Environmental data

Ambient temperature	Storage temperature	-40°C to +90°C
	Operating temperature	-30°C to +70°C

Termination

A CAN bus must be terminated at both ends where CAN+ and CAN- are to be connected via a 120 Ω resistor.

Termination can be effected by connecting a jumper between the pins given below (a 120 Ω resistor is fitted in the component).

Prof 1 CIP		PVG CIP		
CAN_TERM	Pin 1	CAN_TERM	Pin 16	
CAN+	Pin 4	CAN+	Pin 3	

References

ISO 11898	Vehicles, interchange of digital information - Controller Area Network (CAN) for high-speed communication	
CANopen	CANopen communication profile for industrial systems, CiA standard draft 3.0 Revision 3.0	
EMC Directive	89/336/ECC	
ISO 14892	Agricultural and forestry machines - electromagnetic compatibility	
ISO 13766	Earth-moving machinery - electromagnetic compatibility	

Prof 1 CIP data format

The data format is independent of the mechanical configuration. It is manufactured so that a signal for an 8-bit processor can be extracted without signal manipulation. This gives 8-bit signal resolution, and in order to get full

resolution (10 bit) signal manipulation is necessary. This is standard on PVG CIP. The data format is "twos complement" and is shown in the figure below.

1 byte	SIGNMSB							
2 byte	SIGNMSE	SIGNMSBProp2						
3 byte	SIGNMSB							
4 byte	SIGNMSB							
5 byte	rest_Prop4 - LSB rest_Prop3 - LSB rest_Prop2 - LSB rest_Prop1 - LSB							
6 byte	Push 8 Push 7 Push 6 Push 5		Push 5	Push 4B	Push 4A	Push 3B	Push 3A	
	8 bit	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit

SIGN = +/-

MSB = Most significant bit LSB = Least significant bit

PVG CIP specification

Electrical

PVE outputs	8
PVE types that can be connected	PVEO, PVEM, PVEH, PVES incl. versions with float position
PVPX/PVPE outputs	1
Resolution	9 bit (-100% to +100%)
	AMP part no. 1-967280-1, PCB-connector
	AMP part no. 1-967281-1, Timer house
Plug type	AMP part 0-929937-1, junior contact
(Only part no. 1-967280-1 supplied with PVG)	AMP part 0-962876-2, micro contact
	AMP part no. 0-965643-1, cover
	Seals and plugs
CAN setting	Slave only

Plug connections

Pin number	Name		Pin number	Name	
1	PVPX out		22	PVE4_A 🌲	PVE4 signal ∇
2	CAN+		23	PVE5_A 🌲	PVE5 signal ∇
3	CAN+		24	PVE6_A 🌲	PVE6 signal ∇
4	Alarm_1		25	Gnd	
5	Alarm_2		26	PVE7_A 🌲	PVE7 signal ∇
6	Gnd		27	PVE8_A 🌲	PVE8 signal ∇
7	Alarm_3		28	Gnd	
8	Alarm_4		29	U _{dc}	
9	Alarm_5		30	CAN-	
10	Gnd		31	CAN-	
11	Alarm_6		32	PVE1_B 🌲	PVE1 U _{dc} ∇
12	Alarm_7		33	PVE2_B 🌲	PVE2 U _{dc} ∇
13	Alarm_8		34	PVE3_B 🌲	PVE3 U _{dc} ∇
14	Gnd		35	Gnd	
15	U _{dc}		36	PVE4_B 🌲	PVE4 U _{dc} ∇
16	CAN_TERM		37	PVE5_B 🌲	PVE5 U _{dc} ∇
17	Gnd		38	PVE6_B 🌲	PVE6 U _{dc} ∇
18	PVE1_A 🌲	PVE1 signal ∇	39	Gnd	
19	PVE2_A 🌲	PVE2 signal ∇	40	PVE7_B 🌲	PVE7 U _{dc} ∇
20	PVE3_A 🌲	PVE3 signal ∇	41	PVE8_B 🌲	PVE8 U _{dc} ∇
21	Gnd		42	Gnd	

♦ When using PVEO
 ∇ When using PVEM/H/S

PVEM/H/S

Voltage, neutral position		50% of U _{dc}
Valtage full flow part A		25% of U _{dc}
Voltage, full flow port A	Version with float position control	35% of U _{dc}
Valtage full flow part D		75% of U _{dc}
Voltage, full flow port B	Version with float position control	65% of U _{dc}
Voltage, float position control	Version with float position control	80% of U _{dc}
	Low	< 1,6 V
Alarm input signals	High	> 85% of U _{dc}
Max. linearity deviation		3%
Max. pulsation content	(f > 2 kHz)	5%
Max. band width		10 Hz
Max. output current		± 1 mA

PVEO

Max. output current 1,2 A

PVPE/PVPX

Max. output current 3 A Note: To ensure maximum safety, the normally open (NO) version of PVPE/PVPX is recommended.

Environmental data

IP 66, IEC 529

Prof 1 CIP specification

Electrical

Electrical			
Proportional signals max.		4	
Resolution		9 bit (-100% to +100%)	
Operating buttons on/off n	nax.	6	
DID owitch pottings	DIP no. 1	Open = CANopen min. master	
DIP switch settings	DIF 110. 1	Closed = CANopen slave	
DIP switch settings	DIP no. 2	Open = Default baudrate and Node id	
DIF Switch Settings	DIF 110. 2	Closed = Baudrate and Node id acc. to OD	
		AMP part no. 282404-1, male plug	
		AMP part no. 282403-1, female plug	
Plug type Only part no. 282404-1 an	id no. 282107-1 supplied	AMP 282107-1, tab house	
Only part no. 202404-1 an		AMP 282089-1, plug house	
		Seals and plugs	

Plug connections

Pin number	Name
1	CAN_TERM
2	U _{dc}
3	Frame
4	CAN+
5	CAN-

Safety aspects

Both PVG CIP and Prof 1 CIP are designed to give maximum safety. They both incorporate self-test functions, signal protection and 'watchdogs.

The self-test is performed when power is applied and before any of the PVE outputs are activated. The unit then goes to the operating

function and a series of running tests are carried out. A list of these tests is given below.

Environmental/mechanical

As analog version

Self-tests

PVG CIP

- 1. Internal RAM test
- 2. External RAM test
- EE-PROM test
- 4. FLASH test
- 5. Test of feedback monitoring (tests all outputs
- for short-circuiting to earth and U_{dc})

Running tests

PVG CIP

1. Watchdog	
2. PVEH alarms	\$
3. Signal protec	tion

To ensure optimum system function, two safety levels are used:

- Fail-safe condition
- Alarm condition

Fail-safe condition Alarm condition **PVG CIP** Prof 1 CIP PVG CIP PVE forced to neutral position. Alarm signal sent on bus so that Neutral position signal sent from the joystick to all PVEs. a third unit is able to take appro-Voltage supply to PVE cut off. priate action. Depending on OD-index 2108 subindex 1, PVPX/PVPE dump Alarm signal sent on bus so that Alarm signal sent on bus so that a third unit is able to take approa third unit is able to take approvalve dumps pressure in alarm priate action. priate action. condition. Because this is an NO valve (normally open) voltage must be cut off.

Prof 1 CIP

1. Internal RAM test	
2. EE-PROM test	
3. FLASH test	

Prof 1 CIP

- 1. Watchdog
- 2. Potentiometer control

Fail-safe condition arises when faults of the following types occur:

P	VG	CIP	

Fault code HEX	Description	PVEs that go into fail-safe condition
1000	Generic fault	All PVEs
5000	System hardware	All PVEs
5001	Self-test fault, internal RAM	All PVEs
5002	Self-test fault, external RAM	All PVEs
5003	Self-test fault, EE-PROM	All PVEs
5004	Self-test fault, FLASH	All PVEs
5005	Self-test fault, feedback test # 1	PVE 1
5006	Self-test fault, feedback test # 2	PVE 2
5007	Self-test fault, feedback test # 3	PVE 3
5008	Self-test fault, feedback test # 4	PVE 4
5009	Self-test fault, feedback test # 5	PVE 5
500A	Self-test fault, feedback test # 6	PVE 6
500B	Self-test fault, feedback test # 7	PVE 7
500C	Self-test fault, feedback test # 8	PVE 8
500D	Self-test fault, feedback test PVPX	All PVEs
5016	Watchdog fault	All PVEs
6300	Joystick data format nonconformance	All PVEs
8100	Communication fault	No PVEs
8101	Protection fault PDO1	PVE controlled by PD01
8102	Protection fault PDO2	PVE controlled by PD02
8103	Protection fault PDO3	PVE controlled by PD03
8104	Protection fault PDO4	PVE controlled by PD04

Prof 1 CIP

Fault code hex	Description
1000	Generic fault
5000	System hardware
5001	Self-test fault, internal RAM
5003	Self-test fault, EE-PROM
5004	Self-test fault, FLASH
5005	Proportional voltage outside range
5007	Proportional signal registered without corresponding direction change
500F	Watchdog fault

Alarm condition arises on faults of the following types:

Fault code HEX	Description
500E	PVEH alarm # 1, pin 3
500F	PVEH alarm # 2, pin 3
5010	PVEH alarm # 3, pin 3
5011	PVEH alarm # 4, pin 3
5012	PVEH alarm # 5, pin 3
5013	PVEH alarm # 6, pin 3
5014	PVEH alarm # 7, pin 3
5015	PVEH alarm # 8, pin 3

The table below shows at which settings PVPX/PVPE dumps in alarm condition.

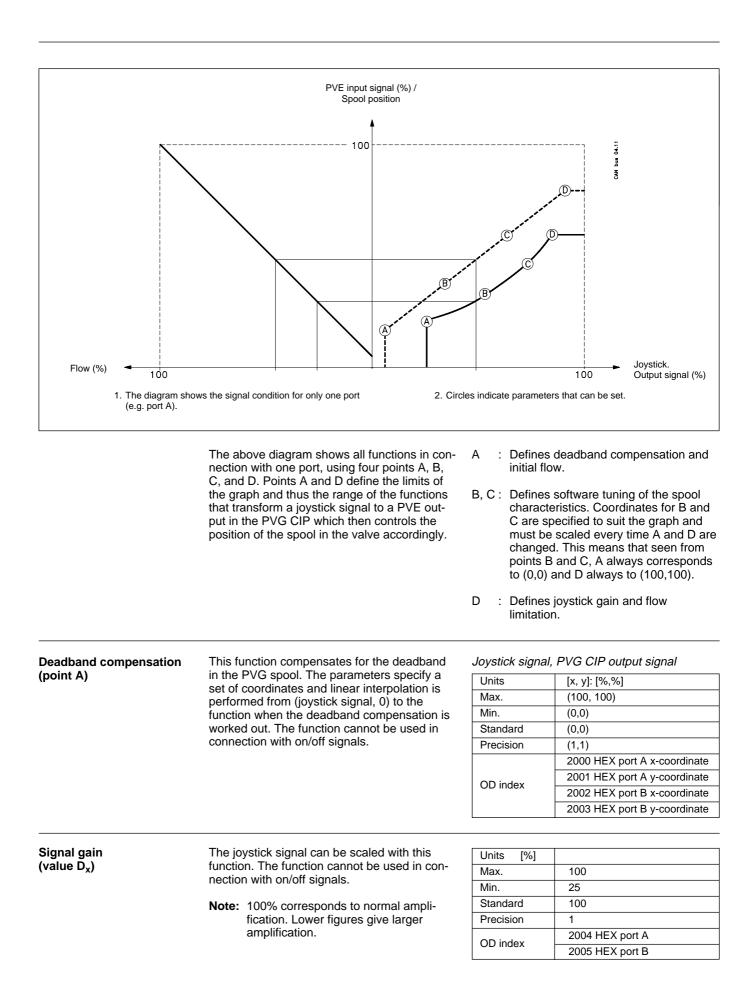
OD-index 2018 subindex 9 HEX	Activation of PVPX/PVPE
0	No PVPX => must not dump in alarm condition
1	PVPX can be controlled from an external source => must not dump in alarm condition
2	PVPX controlled from an external source, or by alarm condition => must dump in alarm condition

Introduction to PVG CIP	 This component is located near the valve and acts as the interface between PVG and CAN bus. The interface can control up to eight PVEs and 1 PVPX/PVPE. System parameters can be set in the OD (see overview, page 25), either by using CIP Configuration Tool or with a normal CANopen Configuration Tool or with a normal CANopen Configuration Tool. Setting up PVG CIP can be divided into four main parts: Identification of components Identification of PVE Identification of PVPX/PVPE Setting up connections To other components on bus (Prof 1 CIP) Between data (joystick signals) and PVE/PVPX 	 a) Baudrate b) Node ide c) Softwirin 4) Setting hyd a) Deadbau b) Signal g c) Flow lim d) Software e) Ramps (different f) Float po g) Power s 	entification g Iraulic-related parameters nd compensation ain itation e tuning of spool characteristics (individual on each port, two settings for each port) sition control
Component identification	To be able to communicate with PVG CIP it is necessary to identify the system components:Identification of PVE typeIdentification of PVPX/PVPE type		
Identification of PVE type	Type identification is used to specify how PVG CIP is to control the PVEs. The types used are specified as follows:	Units Max. Min. Standard	0: Not accessible 1: PVEO 2: PVEM 3: PVEH/S 4: PVEM (float position control) 5: PVEH (float position control) 5 0 3 (PVEH/S)

PVG CIP output/input will be on the following PVE pins, depending on type

PVE pins	PVEH/S	PVEM	PVEO
1	+	+	Port A
2	Signal	Signal	Port B
3	Alarm	N/A	N/A
÷	Frame	Frame	Frame

Precision


OD index

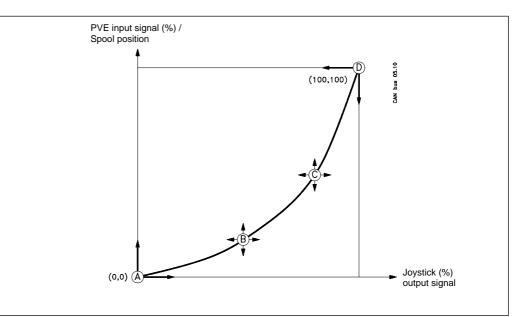
1

2018 HEX

PVPX is used as a safety device for the PVG	Units	-
and dumps to tanks LS pressure in dangerous situations. With PVG CIP it is possible to se-		PVPX can be set as follows:
lect whether PVPX is to dump the LS pressure if a fault occurs in PVEH/PVES (pin 3).		0. PVPX N/A
		1. PVPX present
PVEH/S, PVG CIP will automatically send a		Controlled by external source, e.g. joystick or
		controller input
information. Whether PVPX is present and whether it must be activated in the case of a		 2. PVPX present: Controlled by alarm signation from PVEH/S
following table.		Controlled by external source, e.g. joystick or
Note: If an extra component for control of the	Max	controller input
		-
baily be actuated upon start up.		0
	Precision	
	OD index	2018 subindex 9 HEX
To set up which joystick or other sources the	Units	-
	Max.	-
	Min.	-
different COB-IDs.	Standard	0
	Precision	-
	OD-index	1400 subindex 1 HEX 1401 subindex 1 HEX 1402 subindex 1 HEX 1403 subindex 1 HEX
		e COB-IDs are not used, they e set to zero.
To set up the system the joystick on/off and	Units	-
proportional functions must be directed to the correct PVEs and PVPX/PVPE. This can be done by connecting the PVEs to the correct position on the COB. See example on		-
		-
		0
F~3c =		2104 HEX
Control of dump valves To ensure that an external controller or a joystick is able to control the PVPX, an on/off signal can be mapped to control it. Because it is NO (normally open) a constant voltage must be applied to PVPX/PVPE so that it does not dump the LS pressure and thereby deactivate the PVG. During an alarm condition, voltage must therefore be removed. In other words, if a joystick is used, the button that is mapped for PVPE/PVPX acts as a deadman's button.		
To be able to set up and service PVG CIP some system-related parameters have to be set:		
	 and dumps to tanks LS pressure in dangerous situations. With PVG CIP it is possible to select whether PVPX is to dump the LS pressure if a fault occurs in PVEH/PVES (pin 3). In all cases of fault from a PVE of type PVEH/S, PVG CIP will automatically send a fault message on the bus so that an external controller or similar unit is able to react to the information. Whether PVPX is present and whether it must be activated in the case of a PVEH/PVES fault can be determined from the following table. Note: If an extra component for control of the PVPX is not mapped, it will automatically be actuated upon start-up. To set up which joystick or other sources the PVG CIP is to listen to, the relevant COB-ID must be set in the following OD index. PVG CIP is able to listen to a maximum of four different COB-IDs. To set up the system the joystick on/off and proportional functions must be directed to the correct PVEs and PVPX/PVPE. This can be done by connecting the PVEs to the correct position on the COB. See example on page 21. Control of dump valves To ensure that an external controller or a joystick is able to control the PVPX, an on/off signal can be mapped to control it. Because it is NO (normally open) a constant voltage must be applied to PVPX/PVPE so that it does not dump the LS pressure and thereby deactivate the PVG. During an alarm condition, voltage 	and dumps to tanks LS pressure in dangerous situations. With PVG CIP it is possible to select whether PVPX is to dump the LS pressure if a fault occurs in PVEH/PVES (pin 3). In all cases of fault from a PVE of type PVEH/S, PVG CIP will automatically send a fault message on the bus so that an external controller or similar unit is able to react to the information. Whether PVPX is present and whether it must be activated in the case of a PVEH/PVES fault can be determined from the following table. Note: If an extra component for control of the PVPX is not mapped, it will automatically be actuated upon start-up. Max. Min. Standard Precision OD index To set up which joystick or other sources the PVG CIP is to listen to, the relevant COB-ID must be set in the following OD index. Min. PVG CIP is able to listen to a maximum of four different COB-IDs. Max. To set up the system the joystick on/off and proportional functions must be directed to the correct PVEs and PVPX/PVPE. This can be done by connecting the PVEs to the correct position on the COB. See example on page 21. Units Control of dump valves To ensure that an external controller or a joystick is able to control it. Because it is NO (normally open) a constant voltage must be applied to PVPX/PVPEs that it does not dump the LS pressure and thereby deactivate the PVG. During an alarm condition, voltage must therefore be removed. In other words, if a joystick is used, the button that is mapped

Baudrate	The speed of communication must be set. The	Units	[kbit/s]	
	baudrate becomes effective after system	Max.	1000	
	reboot.	Min.	10	
	Note: The baudrates 10 and 800 are not	Standard	250	
	supported by CIP Configuration Tool	Precision	*	
	v.1.00.	OD index	201A HEX	
		* 10, 20, 50, 100,	125, 250, 500, 800, 1000.	
Node identification	Node identification specifies the address			
	Node identification specifies the address PVG CIP has for the other CAN components	Units	-	
	(applies after system reboot).	Max.	127	
		Min.	1	
		Standard	101	
		Precision	1	
		OD index	100B HEX	
	signal to be sent to one or more PVEs. Softwiring is made via an SDO, making it pos- sible to introduce changes during operation. See example on page 21.	not be mixed.		
Hydraulic-related parameters	 PVG CIP contains many parameters that can be adjusted to optimise the input signal before it is sent to a PVE. These parameters are: Deadband compensation Signal gain Flow limitation Software tuning of spool characteristics Ramps (individual on each port and two different settings for each port) Float position control Power saving 	The purpose of tuning spool characteristics i to allow software modification of the mechar cal spool characteristics made available by t selected spool. See figure on next page. On given joystick movement, the different soft- ware characteristics will give a different spoo position and thereby produce another flow.		

Flow limitation (value D_y)


This function limits the PVE output signal and thereby valve flow. The parameter is specified in percentage since the mechanical characteristics of the PVG CIP spool are not known. The function cannot be used in connection with on/off signals.

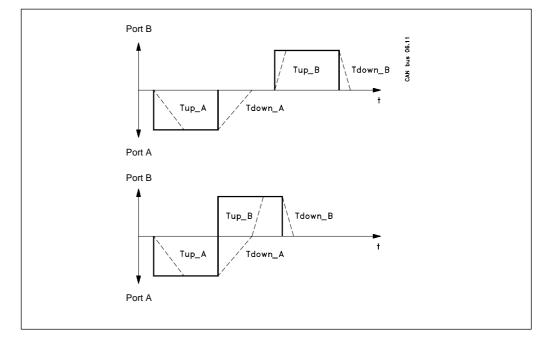
Units	[%]
Max.	100
Min.	Ay (from deadband compensation)
Standard	100
Precision	1
OD index	2006 HEX port A
	2007 HEX port B

Software tuning of spool characteristics (points B, C)

Used to change spool characteristics. This means that the spool need not be changed when only minor changes are necessary. The spool characteristics obtained are limited by its physical characteristics. The function cannot be used in connection with on/off signals.

Note: Points B and C are specified to suit A and D which always represent (0,0) and (100,100) for this function.

	-
Units	1: (Bxx, Byy)
Units	2: (Cxx, Cyy)
Max.	(Bx, By) = (100, 100)
IVIAX.	(Cx, Cy) = (100, 100)
Min.	(Bx, By) = (0,0)
IVIIII.	(Cx, Cy) = (0,0)
Standard	1: (33,33)
Stanuaru	2: (66, 66)
	2008 HEX (Bx_ port A)
	2009 HEX (By_ port B)
	200A HEX (Cx_ port A)
OD index	200B HEX (Cy_ port A)
OD Index	200C HEX (Bx_ port B)
	200D HEX (By_ port B)
	200E HEX (Cx_ port B)
	200F HEX (Cy_ port B)


On the basis of the two coordinate sets B and C, the best approximated curve through these points is drawn in. Depending on the position of the points, the curve is either a second-order or third-order polynomial.

Ramps

After signal tuning of points A-D as specified in the previous figure, the signal follows the ramp that is specified here. Two sets of ramps are available for each PVE output (see figure below). Both work on ramp principle 1, familiar in the EHR modules. Fast operation can be obtained by setting Tdown_A and Tdown_B on zero. The function cannot be used in connec-tion with on/off signals.

Port A (Tup_A, Tdown_ A) Port B (Tup_B, Tdown_ B)

· / –	, _ ,
Units	[ms]
Max.	(5000, 5000)
Min.	(0,0)
Standard	(0,0)
Precision	1
	2010 HEX (Ramp1 Tup_port A)
	2011 HEX (Ramp1 Tdown_port A)
	2012 HEX (Ramp1 Tup_port B)
OD index	2013 HEX (Ramp1 Tdown_port B)
OD IIIdex	2014 HEX (Ramp2 Tup_port A)
	2015 HEX (Ramp2 Tdown_port A)
	2016 HEX (Ramp2 Tup_port B)
	2017 HEX (Ramp2 Tdown_port B)

Ramp switch

Used to select the active ramp setting for a PVG CIP output.

Units	-
	The ramp switch can be set in four ways:
	0: No ramps
	1: Ramp 1 used permanently
	2: Ramp 2 used permanently
	[]: Switch between ramp 1 and ramp 2 using an on/off signal. If this is the case, the address of the on/off (OD index 2100-2103) must be entered in this field.
Max.	3 sec.
Min.	0
Standard	0
Precision	1
OD index	2019 HEX

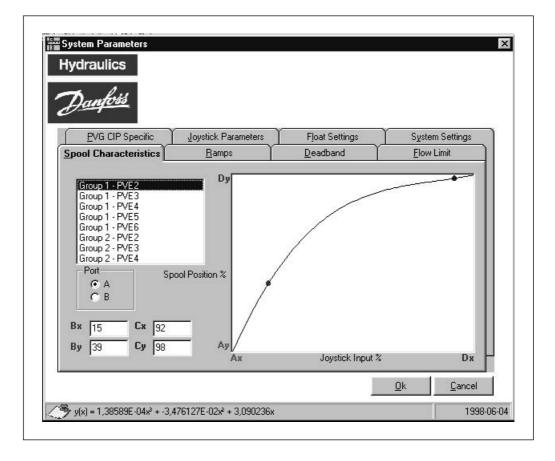
Float position control function	possible to con This is perform designed spoc activate the fu	ion control function makes it nect ports A and B to tank. ned mechanically by a specially of the steps are necessary to nction:	 The function can be deactivated in two ways: If the joystick is moved towards port A by a signal of more than 10%. If the joystick is within 10% signal to both ports A and B and the button is activated The button used to activate the float position is mapped. 		
		n control function must be			
	OD index2104 HEXThe signal for the float position PVE must be activated say more than x% in the direction of port B.				
			OD index	2105 HEX	
	Units	[%]-			
	Max.	100			
	Min.	10			
	Standard	10			
	Precision	1			
	OD index	201D HEX			
Power save time	Defines the time delay from inactivity (PVE signal = neutral) until power to the PVEs is cut off (individually).		Units Max. Min. Standard Precision OD index	[s] 20 0 (not connected) 0 1 201C HEX	
Fault location/service parameters	The following functions are provided to enable servicing and fault location on PVG CIP:Activation of PVEDiagnosingRestoring factory settings				
Enable PVE	This function is used for servicing. It activates		Units	-	
		individual PVE signals, i.e.	Max.	1 (activated)	
		tion is deactivated, a neutral of the PVE irrespective of the	Min.	0 (deactivated)	
	received CAN		Standard	1	
	Teceived OAN message.		Precision	1	
			OD index	201B HEX	

Restoring factory settings

Factory settings of all accessible parameters are stored permanently in PVG CIP. This function is used to restore all parameter settings to "Factory standard" by overwriting the existing parameter settings. Restoring can be performed at several levels by writing a signature "LOAD" in reverse order to the respective subindexes:

Units	-
DOAL	64616F6C HEX
Standard	-
Precision	1
OD index	1011 HEX

- All parameters
- Communication parameters
 - Node ID
 - Baudrate
- Functions
- Connection between Prof 1 CIP and
 DVC CIP
 - PVG CIP


Introduction to Prof 1 CIP	joystick and c mechanical co contains othe hydraulics ma can be set in using the CIP	 This component is based on the Prof 1 oystick and can therefore be set up for many mechanical configurations. The joystick also contains other functions often used on the hydraulics market. The associated parameters can be set in the OD (see page 29) either using the CIP Configuration Tool or standard CANopen configuration tools. Setting up Prof 1 CIP can be divided into the main parts: Setting up Prof 1 CIP can be divided into the main parts: Setting up the mechanical Prof 1 CIP Setting up hydraulic-related parameters a) Guide function b) Memory Setting system-related parameters a) Baudrate setting b) Node identification c) Cyclic trigger d) Node guarding Fault location and servicing a) Restoring factory settings b) Diagnosing 			mechanical Prof 1 CIP raulic-related parameters on -related parameters tting ication r ing und servicing
Setting up the mechanical Prof 1 CIP	The Prof 1 joy mechanical co in which this o the maximum This means th on/off signals	some of the on/off signal same reasor	fields s carry n it is r from j	configuration of the joystick, for proportional and/or y no information. For the not necessary to make any joystick to joystick because nical setups.	
Setting up hydraulic- related parameters	Prof 1 CIP also contains functions that are often used in hydraulic systems:Joystick guide function. This function prioritises the main axis in the joystick by giving first priority to the axis activated first.		the user to fers a prop though the The propo deleted fro button. Th	o set the portion of joyst rtional om the is butt	action makes it possible for the joystick so that it trans hal signal to the bus even ick is in neutral. I signal can be maintained memory by pressing a on and the proportional mapped in:
		e			
	Joystick gate	function	OD ind	ex	3007 HEX
	Units	-	- /		
	Max.	1 (function activated)		ction o	can be activated/deactivated
	Min.	0 (function deactivated)	in:		
	Standard	0			1
	Precision	1	Units		-
	OD index	3002 HEX	Max.		1 (function activated)
			Min.		0 (function deactivated)
			Standa	rd	0
			Precisi	on	1
			OD ind	ex	3004 HEX
System-related parameters	To be able to set up and service Prof 1 CIP, the following system-related parameters must be adjusted:		 Baudrate Node iden Cyclic trigg Node guar 	ger	on
Baudrate	The communi	cation speed must be set. The	Units	1	[kbit/s]
		es into effect after system	Max.		1000
	reboot.				
			Min.		10
		udrates 10 and 800 are not	Standard		250
	supported by CIP Configuration Tool		Precision	1	*
		iou by on configuration root			
	v.1.00.		OD index		3000 HEX

Node identification	Node identification specifies which address	Units	-
	Prof 1 CIP has.	Max.	127
		Min.	1
		Standard	100
		Precision	1
		OD index	100B HEX
Cyclic trigger	The joystick sends information on the first	Units	[ms]
-,	PDO (tx). As standard, the joystick transfers	Max.	200
	cyclically using $T_c = 10$ ms. NMT is used if a	Min.	10
	fault arises in the joystick. The NMT object is a	Standard	10
	standard emergency object in CANopen.	Precision	1
		OD index	
		OD Index	3005 HEX
	Used in minimum systems where Prof 1 CIP is		
Node guarding	master. The function checks whether all com-	Units	Node ID
	ponents/nodes (max. 20) on the bus work. If	Max.	127
	they do not, the components involved receive	Min.	0
	a reset on their Node ID via the CAN bus.	Standard	0
		Precision	1
		OD index	3008 HEX subindex 1-20
parameters	CIP for servicing and fault location:		
parameters	CIP for servicing and fault location:DiagnosingRestoring factory settings		
	 Diagnosing Restoring factory settings Here, it is possible to see the last ten faults 	OD index	1003 HEX
-	DiagnosingRestoring factory settings	OD index	1003 HEX
	 Diagnosing Restoring factory settings Here, it is possible to see the last ten faults 	OD index	1003 HEX
Diagnosing	 Diagnosing Restoring factory settings Here, it is possible to see the last ten faults and their type (see page 9). Note: The value 0 signifies no fault. 		
Diagnosing	 Diagnosing Restoring factory settings Here, it is possible to see the last ten faults and their type (see page 9). Note: The value 0 signifies no fault. Factory settings of all accessible parameters 	Units	-
Diagnosing	 Diagnosing Restoring factory settings Here, it is possible to see the last ten faults and their type (see page 9). Note: The value 0 signifies no fault. 	Units DOAL	- 64616F6C HEX
Diagnosing	 Diagnosing Restoring factory settings Here, it is possible to see the last ten faults and their type (see page 9). Note: The value 0 signifies no fault. Factory settings of all accessible parameters are stored permanently in Prof 1 CIP. This function is used to re-establish all parameter settings to "Factory standard" by overwriting 	Units DOAL Min.	- 64616F6C HEX 0 (deactivated)
Diagnosing	 Diagnosing Restoring factory settings Here, it is possible to see the last ten faults and their type (see page 9). Note: The value 0 signifies no fault. Factory settings of all accessible parameters are stored permanently in Prof 1 CIP. This function is used to re-establish all parameter settings to "Factory standard" by overwriting the existing parameter settings. 	Units DOAL Min. Standard	- 64616F6C HEX 0 (deactivated) -
Diagnosing	 Diagnosing Restoring factory settings Here, it is possible to see the last ten faults and their type (see page 9). Note: The value 0 signifies no fault. Factory settings of all accessible parameters are stored permanently in Prof 1 CIP. This function is used to re-establish all parameter settings to "Factory standard" by overwriting the existing parameter settings. Re-establishment can be performed at several 	Units DOAL Min. Standard Precision	- 64616F6C HEX 0 (deactivated) - 1
parameters Diagnosing Restoring factory settings	 Diagnosing Restoring factory settings Here, it is possible to see the last ten faults and their type (see page 9). Note: The value 0 signifies no fault. Factory settings of all accessible parameters are stored permanently in Prof 1 CIP. This function is used to re-establish all parameter settings to "Factory standard" by overwriting the existing parameter settings. 	Units DOAL Min. Standard	- 64616F6C HEX 0 (deactivated) -

Introduction to CIP Configuration Tool	This program pack offers the user several different programs for meeting various requirements: <i>CIP Configuration Tool</i> Setting up a system consisting exclusively of PVG CIP and Prof 1 CIP via a graphical user interface. It takes the user through setting up a system in an easily understandable and instructive way. It cannot set up components from a third party. However, the hydraulic parameters in PVG CIP and Prof 1 CIP can be adjusted with advantage even though CAN components from a third party are involved. <i>CIP Downloading Utility</i> This program enables the adjustment of CANopen parameters on all CANopen components, direct in the OD (see example on page 21).	 <i>CANview</i> CANview is a program able to read the activity taking place on the bus. It is therefore a tool that can be used in servicing. The program pack also contains a dongle (PEAK) which is the interface between the PC and CAN bus. P.S. We recommend the use of PEAK's dongle in connection with our software.
System requirements	 Windows 95 or higher Recommended Pentium microprocessor (or higher) 16 Mb RAM (recommended) PEAK dongle (CAN communication interface) PS/2 mouse port 	

Installation of CIP Configu- To install a CIP Configuration Tool: ration Tool

- Insert the CD-ROM in the CD-ROM drive.
 From Start, select Run and write
- x:\setup.exe (where x is the CD-ROM drive).
- 3. Follow the displayed instructions.

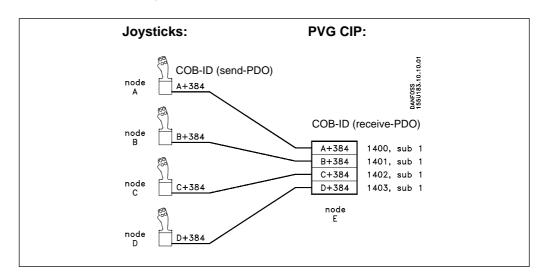
Example of system setup via CIP Downloading Utility

This is an example of setting up the parameters in connecting a Prof 1 CIP joystick with a PVG CIP. The example is divided into steps:

- Step 1: Connection of PDOs
- Step 2: Setup of PVE types
- Step 3: Connections between Prof 1 CIP and PVG CIP outputs

The example is based on the following requirements:

PVG group


Output	Туре
1	PVEH
2	PVEO
3	PVEH float position control
4	N/A
5	N/A
6	N/A
7	N/A
8	N/A

Connection

Prof 1 CIP	PVG CIP
Plug 1	PVE 1
Push 3A	PVE 2 port A
Push 4A	PVE 2 port B
Plug 2	PVE 3 (inverted)
Push 5	PVE 3 (float position (control activated)

Stage 1: Connection of PDOs

To be able to send information between Prof 1 CIP and PVG CIP components, the Prof 1 CIP send-PDO and PVG CIP receive-PDO match each other. Since both comply with the CANopen standard, the connection must be established by the system designer. There is a connection between the joystick node ID and the corresponding COB-ID. It is used to send and receive PDOs and is made up as follows:

Since the standard ID of Prof 1 CIP is 100, the corresponding send-PDO uses COB-ID: 100+384d = 484d

This is done by changing the index 1400 HEX, Subindex 1 = 484d, where d states that the figure is decimal.

To connect the PVG CIP to the COB-ID of a Prof 1 CIP it is also necessary to change the PVG CIP receive-PDO to 484d.

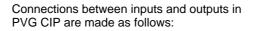
1400, sub 1

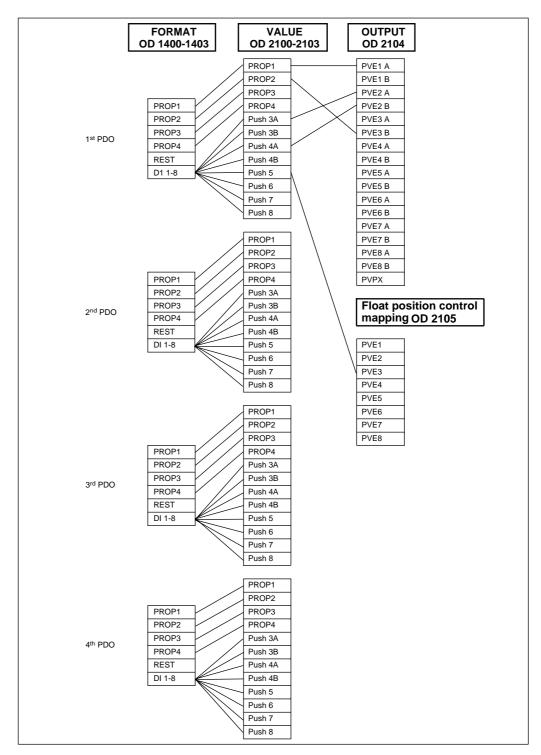
Downloa	ad area	a: User Defined 💌	Comr	nand:	
User nan	ne:	Eksempel		<u>R</u> ead	
Reset	Defau	ults		<u>W</u> rite	
	Sub	ParameterName	Access	Type ParameterValu	e 🔺
2104		Output Mapping	ro		
2104	0	Number of entries	ro	18	
2104	1	PVE1A	rw	0x210001	
2104	2	PVE1B	rw	0x0	
2104	3	PVE2A	rw	0x210005	
2104	4	PVE2B	rw	0x210007	
2104	5	PVE3A	rw	0x0	
2104	6	PVE3B	rw	0x210002	
2104	7	PVE4A	rw	0x0	
2104	8	PVE4B	rw	0x0	
2104	9	PVE5A	rw	0x0	
2104	A	PVE5B	rw	0x0	
2104	В	PVE6A	rw	0x0	
2104	С	PVE6B	rw	0x0	
2104	D	PVE7A	rw	0x0	
2104	E	PVE7B	rw	0x0	
2104	F	PVF8A	rw	0x0	

Step 2: Setting up PVE types

PVE (PVEM/H/S) types are used to select the PVG CIP control function. The types are defined in Index 2018, subindex 1-8 (see page 27).

Applicable PVE types:


Not accessible	0
PVEO	1
PVEM	2
PVEH/S	3
PVEM (float position control)	4
PVEH (float position control)	5


In this example the following changes have:

Screen dump of type setup

Downlo	oad area	a: User Defined 💌	- Command		
User n	ame:	Eksempel		<u>R</u> ead	
Res	et <u>D</u> efa			<u>₩</u> rite	
Index	Sub	ParameterName	AccessType	ParameterValue	
1400		Number of parameters following	rw		
1400	0	Number of entries	ro	2	
1400	1	COB-ID	rw	484	
1400	2	Transmission type	ro	Oxfe	1
1401	100	Number of parameters following	ro		
1401	0	Number of entries	10	2	
1401	1	COB-ID	rw	0	
1401	2	Transmission type	10	Oxfe	
1402	100	Number of parameters following	10		
1402	0	Number of entries	10	2	
1402	1	COB-ID	rw	0	
1402	2	Transmission type	ro	Oxfe	
1403		Number of parameters following	ro		
1403	0	Number of entries	ro	2	
1403	1	COB-ID	rw	0	
1403	2	Transmission type	10	Oxfe	
2000	100	Deadhand AX A	ro		-

Step 3: Connecting joystick signals to PVE outputs

In the PVG CIP OD the inputs have indexes 1400-1403. In this OD range only the format of incoming message is shown, not the values. The values of incoming joystick signals can be read from the index range 2100-2103.

	Index for changing COB-ID, see step 1	Index from which values can be read
1 st PDO	1400, sub 1	2100, sub 1-C
2 nd PDO	1401, sub 1	2101, sub 1-C
3 rd PDO	1402, sub 1	2102, sub 1-C
4 th PDO	1403, sub 1	2103, sub 1-C

PVG CIP inputs can be connected with Prof 1 CIP outputs by writing the corresponding value index in the PVG CIP input mapping structure. This means that in this example we must make the following connections in PVG CIP OD index 2104 HEX.

Downlo	ad area	a: User Defined 💌	Com	mand:	
User na	ame:	Eksempel		<u>R</u> ead	
	et <u>D</u> efa			<u>₩</u> rite	
Index	Sub	ParameterName	Access	Type ParameterValue	
2104		Output Mapping	ro	2004-20	
2104	0	Number of entries	ro	18	
2104	1	PVE1A	rw	0x210001	
2104	2	PVE1B	rw	0x0	
2104	3	PVE2A	rw	0x210005	
2104	4	PVE2B	rw	0x210007	
2104	5	PVE3A	rw	0x0	
2104	6	PVE3B	rw	0x210002	
2104	7	PVE4A	rw	0x0	
2104	8	PVE4B	rw	0x0	
2104	9	PVE5A	rw	0x0	
2104	A	PVE5B	rw	0x0	
2104	В	PVE6A	rw	0x0	
2104	С	PVE6B	rw	0x0	
2104	D	PVE7A	rw	0x0	
2104	E	PVE7B	rw	0x0	
2104	F	PVF8A	rw	0x0	

Downlo	ad area	a: User Defined 💌	- Command	k	
User na	ame:	Eksempel		<u>R</u> ead	
Rese	et <u>D</u> efa	ults		<u>₩</u> rite	
Index	Sub	ParameterName	AccessType	ParameterValue	Ŀ
2104	В	PVE6A	ſW	0x0	Г
2104	С	PVE6B	rw	0x0	1
2104	D	PVE7A	rw	0x0	l
2104	E	PVE7B	rw	0x0	1
2104	F	PVE8A	rw	0x0	1
2104	10	PVE8B	rw	0x0	l
2104	11	PVPX	rw	0x0	1
2105		Float PVE push mapping	rw	2000	l
2105	0	Number of entries	ro	8	I
2105	1	PVE1	rw	0x0	l
2105	2	PVE2	rw	0x0	l
2105	3	PVE3	rw	0x210009	I
2105	4	PVE4	rw	0x0	1
2105	5	PVE5	rw	0x0	l
2105	6	PVE6	rw	0x0	L
2105	7	PVE7	rw	0x0	ŀ
2105	8	PVF8	rw	0x0	l

*) Note: If a proportional signal is connected to, for example, PVE 3 <u>B</u> instead of <u>A</u>, the signal becomes inverted.

Parameter list 1 of 5 for PVG CIP (shortened version of OD)

Index	Subindex	Parameter Name
1000	Sabinder	Device Type
1000		Error Register
1001		error field
1003	0	Number of errors
	0	Standard error code
1003	1	
1004		Number of PDOs supported
1004	0	Number of PDOs supported
1004	1	Number of synchronous PDOs
1004	2	Number of asynchronous PDOs
1008		Manufaturer Device Name
1009		Hardware Version
100A		Software Version
100B		Node-ID
100C		Guard Time
100D		Life time factor
100E		Node guarding ID
1011		Restore parameters
1011	0	Largest supported sub-index
1011	1	Restore all default parameters
4011		Restore communication default
1011	2	parameters
1011	4	Restore default function settings
1011	5	Restore default output mapping
1400		Number of parameters following
1400	0	Number of entries
1400	1	COB-ID
1400	2	Transmission type
1401		Number of parameters following
1401	0	Number of entries
1401	1	COB-ID
1401	2	Transmission type
1402	_	Number of parameters following
1402	0	Number of entries
1402	1	COB-ID
1402	2	Transmission type
1402	2	Number of parameters following
	0	Number of entries
1403	0	
1403	1	COB-ID
1403	2	Transmission type
1600		Input values PDO1 index 1600
1600	0	Number of entries
1600	1	Prop1
1600	2	Prop2
1600	3	Prop3
1600	4	Prop4
1600	5	Rest
1600	6	Push3A
1600	7	Push3B
1600	8	Push4A
1600	9	Push4B
1600	A	Push5
1600	В	Push6
1600	С	Push7
1600	D	Push8
1601		Input values PDO2 index 1601
1601	0	Number of entries
1601	1	Prop1
1601	2	Prop2
	-	· · · · · · · · · · · · · · · · · · ·

Index	Subindex	Parameter Name
1601	3	Prop3
1601	4	Prop4
1601	5	Rest
1601	6	Push3A
1601	7	Push3B
1601	8	Push4A
1601	9	Push4B
1601	А	Push5
1601	В	Push6
1601	С	Push7
1601	D	Push8
1602		Input values PDO3 index 1602
1602	0	Number of entries
1602	1	Prop1
1602	2	Prop2
1602	3	Prop3
1602	4	Prop4
1602	5	Rest
1602	6	Push3A
1602	7	Push3B
1602	8	Push4A
1602	9	Push4B
1602	A	Push5
1602	B	Push6
1602	C	Push7
1602	D	Push8
1603		Input values PDO4 index 1603
1603	0	Number of entries
1603	1	Prop1
1603	2	Prop2
	3	-
1603	4	Prop3
1603		Prop4
1603	5	Rest
1603	6	Push3A
1603	7	Push3B
1603	8	Push4A
1603	9	Push4B
1603	A	Push5
1603	В	Push6
1603	С	Push7
1603	D	Push8
2000		Deadband_AX_A
2000	0	Number of PVEs
2000	1	DBC_1_AX_A
2000	2	DBC_2_AX_A
2000	3	DBC_3_AX_A
2000	4	DBC_4_AX_A
2000	5	DBC_5_AX_A
2000	6	DBC_6_AX_A
2000	7	DBC_7_AX_A
2000	8	DBC_8_AX_A
2001		Deadband_AY_A
2001	0	Number of PVEs
2001	1	DBC_1_AY_A
2001	2	DBC_2_AY_A
2001	3	DBC_3_AY_A
2001	4	DBC_4_AY_A
2001	5	DBC_5_AY_A
		۱

Parameter list 2 of 5 for PVG CIP (shortened version of OD)

Index	Subindex	Parameter Name	Index	Su
2001	6	DBC_6_AY_A	2007	
2001	7	DBC_7_AY_A	2007	
2001	8	DBC_8_AY_A	2007	
2002		Deadband_AX_B	2007	
2002	0	Number of PVEs	2007	
2002	1	DBC_1_AX_B	2008	
2002	2	DBC_2_AX_B	2008	
2002	3	DBC_3_AX_B	2008	
2002	4	DBC_4_AX_B	2008	
2002	5	DBC_5_AX_B	2008	
2002	6	DBC_6_AX_B	2008	
2002	7	DBC_7_AX_B	2008	
2002	8	DBC_8_AX_B	2008	
2003		Deadband_AY_B	2008	
2003	0	Number of PVEs	2008	
2003	1	DBC_1_AY_B	2009	
2003	2	DBC_2_AY_B	2009	
2003	3	DBC_3_AY_B	2009	
2003	4	DBC_4_AY_B	2009	
2003	5	DBC_5_AY_B	2009	
2003	6	DBC_6_AY_B	2003	
2003	7	DBC_7_AY_B	2003	
2003	8	DBC 8 AY B	2009	
	0	GAIN		
2004	0		2009	
2004	0	Number of PVEs GAIN_1_DX_A	2009	
2004	1		200A	
2004	2	GAIN_2_DX_A	200A	
2004	3	GAIN_3_DX_A	200A	
2004	4	GAIN_4_DX_A	200A	
2004	5	GAIN_5_DX_A	200A	
2004	6	GAIN_6_DX_A	200A	
2004	7	GAIN_7_DX_A	200A	
2004	8	GAIN_8_DX_A	200A	
2005		GAIN_DX_B	200A	
2005	0	Number of PVEs	200A	
2005	1	GAIN_1_DX_B	200B	
2005	2	GAIN_2_DX_B	200B	
2005	3	GAIN_3_DX_B	200B	
2005	4	GAIN_4_DX_B	200B	
2005	5	GAIN_5_DX_B	200B	
2005	6	GAIN_6_DX_B	200B	
2005	7	GAIN_7_DX_B	200B	
2005	8	GAIN_8_DX_B	200B	
2006		Flow Limit	200B	
2006	0	Number of PVEs	200B	
2006	1	FLOW LIMIT_1_DY_A	200C	
2006	2	FLOW LIMIT_2_DY_A	200C	
2006	3	FLOW LIMIT_3_DY_A	200C	
2006	4	FLOW LIMIT_4_DY_A	200C	
2006	5	FLOW LIMIT_5_DY_A	200C	
2006	6	FLOW LIMIT_6_DY_A	200C	
2006	7	FLOW LIMIT_7_DY_A	200C	
2006	8	FLOW LIMIT_8_DY_A	200C	
2007		FLOW LIMIT	200C	
2007	0	Number of PVEs	200C	
2007	1	FLOW LIMIT_1_DY_B	200D	
			0000	
2007	2	FLOW LIMIT_2_DY_B	200D	

Index	Subindex	Parameter Name
2007	4	FLOW LIMIT_4_DY_B
2007	5	FLOW LIMIT_5_DY_B
2007	6	FLOW LIMIT_6_DY_B
2007	7	FLOW LIMIT_7_DY_B
	8	FLOW LIMIT 8 DY B
2007	0	
2008	0	SW TUNE BX A
2008	0	Number of PVEs
2008	1	SW TUNE_1_BX_A
2008	2	SW TUNE_2_BX_A
2008	3	SW TUNE_3_BX_A
2008	4	SW TUNE_4_BX_A
2008	5	SW TUNE_5_BX_A
2008	6	SW TUNE_6_BX_A
2008	7	SW TUNE_7_BX_A
2008	8	SW TUNE_8_BX_A
2009		SW TUNE BY A
2009	0	Number of PVEs
2009	1	SW TUNE_1_BY_A
2009	2	SW TUNE_2_BY_A
2009	3	SW TUNE_3_BY_A
2009	4	SW TUNE_4_BY_A
2009	5	SW TUNE_5_BY_A
2009	6	SW TUNE_6_BY_A
2009	7	SW TUNE_7_BY_A
2009	8	SW TUNE_8_BY_A
200A		SW TUNE CX A
200A	0	Number of PVEs
200A	1	SW TUNE_1_CX_A
200A	2	SW TUNE_2_CX_A
200A	3	SW TUNE_3_CX_A
200A	4	SW TUNE_4_CX_A
200A	5	SW TUNE_5_CX_A
200A	6	SW TUNE_6_CX_A
200A	7	SW TUNE_7_CX_A
200A	8	SW TUNE_8_CX_A
200B		SW TUNE CY A
200B	0	Number of PVEs
200B	1	SW TUNE_1_CY_A
200B	2	SW TUNE_2_CY_A
200B	3	 SW TUNE_3_CY_A
200B	4	SW TUNE_4_CY_A
200B	5	SW TUNE_5_CY_A
200B	6	SW TUNE_6_CY_A
200B	7	SW TUNE_7_CY_A
200B	8	SW TUNE_8_CY_A
200D		SW TUNE BX B
2000 200C	0	Number of PVEs
2000 200C	1	SW TUNE_1_BX_B
2000 200C	2	SW TUNE 2 BX B
200C	3	SW TUNE 3 BX B
200C	4	SW TUNE 4 BX B
200C	5	SW TUNE 5 BX B
200C	5 6	SW TUNE_5_BX_B
200C	6 7	SW TUNE_6_BX_B
200C		
	8	SW TUNE_8_BX_B
200D	0	SW TUNE BY B
200D	0	Number of PVEs
200D	1	SW TUNE_1_BY_B

HN.50.Y1.02

Parameter list 3 of 5 for PVG CIP (shortened version of OD)

	<u></u>	
Index	Subindex	Parameter Name
200D	2	SW TUNE_2_BY_B
200D	3	SW TUNE_3_BY_B
200D	4	SW TUNE_4_BY_B
200D	5	SW TUNE_5_BY_B
200D	6	SW TUNE_6_BY_B
200D	7	SW TUNE_7_BY_B
200D	8	SW TUNE_8_BY_B
200E		SW TUNE CX B
200E	0	Number of PVEs
200E	1	SW TUNE_1_CX_B
200E	2	SW TUNE_2_CX_B
200E	3	SW TUNE_3_CX_B
200E	4	SW TUNE_4_CX_B
200E	5	SW TUNE_5_CX_B
200E	6	SW TUNE_6_CX_B
200E	7	SW TUNE_7_CX_B
200E	8	SW TUNE_8_CX_B
200F		SW TUNE CY B
200F	0	Number of PVEs
200F	1	SW TUNE_1_CY_B
200F	2	SW TUNE_2_CY_B
200F	3	SW TUNE_3_CY_B
200F	4	SW TUNE_4_CY_B
200F	5	SW TUNE 5 CY B
200F	6	SW TUNE_6_CY_B
200F	7	SW TUNE 7 CY B
200F	8	SW TUNE_8_CY_B
2010	-	RAMP1 TUP A
2010	0	Number of PVEs
2010	1	RAMP1 1 TUP A
2010	2	RAMP1 2 TUP A
2010	3	RAMP1 3 TUP A
2010	4	RAMP1 4 TUP A
2010	5	RAMP1 5 TUP A
2010	6	RAMP1_6_TUP_A
2010	7	RAMP1_7_TUP_A
2010	8	RAMP1_8_TUP_A
2010	0	RAMP1 TDOWN A
2011	0	Number of PVEs
2011	1	RAMP1 1 TDOWN A
2011	2	RAMP1_2_TDOWN_A
2011	3	RAMP1_2_TDOWN_A
2011	4	RAMP1_3_TDOWN_A RAMP1_4 TDOWN_A
2011	5	RAMP1_4_TDOWN_A RAMP1 5 TDOWN A
		RAMP1_5_TDOWN_A
2011	6	RAMP1_6_TDOWN_A
2011		
2011	8	RAMP1_8_TDOWN_A
2012		RAMP1 TUP B
2012	0	Number of PVEs
2012	1	RAMP1_1_TUP_B
2012	2	RAMP1_2_TUP_B
2012	3	RAMP1_3_TUP_B
2012	4	RAMP1_4_TUP_B
2012	5	RAMP1_5_TUP_B
2012	6	RAMP1_6_TUP_B
2012	7	RAMP1_7_TUP_B
2012 2012	7 8	RAMP1_7_TUP_B RAMP1_8_TUP_B

Index	Subindex	Parameter Name
2013	0	Number of PVEs
2013	1	RAMP1_1_TDOWN_B
2013	2	RAMP1_2_TDOWN_B
2013	3	RAMP1_3_TDOWN_B
2013	4	RAMP1_4_TDOWN_B
2013	5	RAMP1_5_TDOWN_B
2013	6	RAMP1_6_TDOWN_B
2013	7	RAMP1_7_TDOWN_B
2013	8	RAMP1_8_TDOWN_B
2014		RAMP2 TUP A
2014	0	Number of PVE's
2014	1	RAMP2_1_TUP_A
2014	2	RAMP2_2_TUP_A
2014	3	RAMP2_3_TUP_A
2014	4	RAMP2_4_TUP_A
2014	5	RAMP2 5 TUP A
2014	6	RAMP2 6 TUP A
2014	7	 RAMP2_7_TUP_A
2014	8	RAMP2 8 TUP A
2015	-	RAMP2 TDOWN A
2015	0	Number of PVEs
2015	1	RAMP2_1_TDOWN_A
2015	2	RAMP2_2_TDOWN_A
2015	3	RAMP2_3_TDOWN_A
2015	4	RAMP2_3_TDOWN_A
2015	5	RAMP2_5_TDOWN_A
2015	6	RAMP2_5_TDOWN_A
2015	7	RAMP2_0_TDOWN_A
2015		RAMP2_7_TOOWN_A
	8	RAMP2_6_TOOWN_A
2016	0	
2016	0	Number of PVEs RAMP2 1 TUP B
2016		RAMP2_1_TUP_B RAMP2_2_TUP_B
2016	2	
2016	3	RAMP2_3_TUP_B
2016	4	RAMP2_4_TUP_B
2016	5	RAMP2_5_TUP_B
2016	6	RAMP2_6_TUP_B
2016	7	RAMP2_7_TUP_B
2016	8	RAMP2_8_TUP_B
2017	-	RAMP2 TDOWN B
2017	0	Number of PVEs
2017	1	RAMP2_1_TDOWN_B
2017	2	RAMP2_2_TDOWN_B
2017	3	RAMP2_3_TDOWN_B
2017	4	RAMP2_4_TDOWN_B
2017	5	RAMP2_5_TDOWN_B
2017	6	RAMP2_6_TDOWN_B
2017	7	RAMP2_7_TDOWN_B
2017	8	RAMP2_8_TDOWN_B
2018		PVE Type Indicator
2018	0	Number of PVEs + PVPX
2018	1	TYPE_1
2018	2	TYPE_2
2018	3	TYPE_3
2018	4	TYPE_4
2018	5	TYPE_5
2018	6	TYPE_6
2018	7	TYPE_7
ı		·]

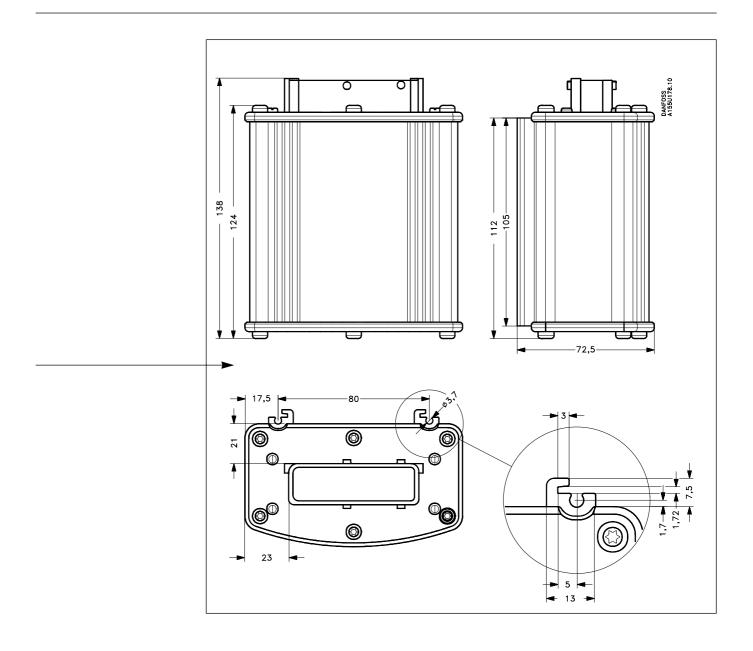
Parameter list 4 of 5 for PVG CIP (shortened version of OD)

Index	Subindex		Index	Subindex
2018	8		2101	0
2018	9	PVPX AVAILABLE	2101	1
2019		RAMP MODE	2101	2
2019	0	Number of PVEs	2101	3
2019	1	RAMP MODE_1	2101	4
2019	2	RAMP MODE_2	2101	5
2019	3	RAMP MODE_3	2101	6
2019	4	RAMP MODE_4	2101	7
2019	5	RAMP MODE_5	2101	8
2019	6	RAMP MODE_6	2101	9
2019	7	RAMP MODE_7	2101	A
2019	8	RAMP MODE_8	2101	В
201A		Baudrate	2101	С
201B		ENABLE PVE OUTPUTS	2102	
201B	0	Number of PVEs	2102	0
201B	1	ENABLE_1	2102	1
201B	2	ENABLE_2	2102	2
201B	3	ENABLE_3	2102	3
201B	4	ENABLE 4	2102	4
201B	5	ENABLE 5	2102	5
201B 201B	6	ENABLE 6	2102	6
201B 201B	7	ENABLE 7	2102	7
201B 201B	8	ENABLE 8	2102	8
	0			-
201C	0	Power saving time	2102	9
201C	0	Number of PVEs	2102	A
201C	1	POWER SAVING TIME_1	2102	B
201C	2	POWER SAVING TIME_2	2102	С
201C	3	POWER SAVING TIME_3	2103	-
201C	4	POWER SAVING TIME_4	2103	0
201C	5	POWER SAVING TIME_5	2103	1
201C	6	POWER SAVING TIME_6	2103	2
201C	7	POWER SAVING TIME_7	2103	3
201C	8	POWER SAVING TIME_8	2103	4
201D		FLOAT ACTIVATION LEVEL	2103	5
201D	0	Number of PVEs	2103	6
201D	1	FLOAT ACTIVATION LEVEL_1	2103	7
201D	2	FLOAT ACTIVATION LEVEL_2	2103	8
201D	3	FLOAT ACTIVATION LEVEL_3	2103	9
201D	4	FLOAT ACTIVATION LEVEL_4	2103	A
201D	5	FLOAT ACTIVATION LEVEL_5	2103	В
201D	6	FLOAT ACTIVATION LEVEL_6	2103	С
201D	7	FLOAT ACTIVATION LEVEL_7	2104	
201D	8	FLOAT ACTIVATION LEVEL_8	2104	0
2100		Input values PDO 1	2104	1
2100	0	Number of entries	2104	2
2100	1	Prop1	2101	3
2100	2	Prop2	2101	4
2100	3	Prop3	2104	5
2100	4	Prop4	2104	6
2100		Push3A	2104	
	5			7
2100	6	Push3B	2104	8
2100	7	Push4A	2104	9
2100	8	Push4B	2104	A
2100	9	Push5	2104	В
2100	А	Push6	2104	С
2100	В	Push7	2104	D
2100	С	Push8	2104	E
2101		Input values PDO 2	2104	F

Index	Subindex	Parameter Name			
2101		Number of entries			
2101	1	Prop1			
2101	2	Prop2			
2101	3	Prop3			
2101	4	Prop4			
2101	5	Push3A			
2101	6	Push3B			
2101	7	Push4A			
2101	8	Push4B			
2101	9	Push5			
2101	A	Push6			
2101	B	Push7			
2101	C	Push8			
2101	0	Input values PDO 3			
2102	0	Number of entries			
2102	1	Prop1			
2102	2	Prop2			
2102	3	Prop3			
2102	3	Prop3 Prop4			
2102	4 5	Prop4 Push3A			
2102	5 6	Push3B			
2102	7	Push4A			
2102	8	Push4B			
2102	9	Push5			
2102	A	Push6			
2102	В	Push7			
2102	C	Push8			
2102		Input values PDO 4			
2103	0	Number of entries			
2103	1	Prop1			
2103	2	Prop2			
2103	3	Prop3			
2103	4	Prop4			
2103	5	Push3A			
2103	6	Push3B			
2103	7	Push4A			
2103	8	Push4B			
2103	9	Push5			
2103	Α	Push6			
2103	В	Push7			
2103	С	Push8			
2104		Output Mapping			
2104	0	Number of entries			
2104	1	PVE1A			
2104	2	PVE1B			
2104	3	PVE2A			
2104	4	PVE2B			
2104	5	PVE3A			
2104	6	PVE3B			
2104	7	PVE4A			
2104	8	PVE4B			
2104	9	PVE5A			
2104	А	PVE5B			
2104	В	PVE6A			
2104	С	PVE6B			
2104	D	PVE7A			
2104	E	PVE7B			
2104	F	PVE8A			

Parameter list 5 of 5 for PVG CIP (shortened version of OD)

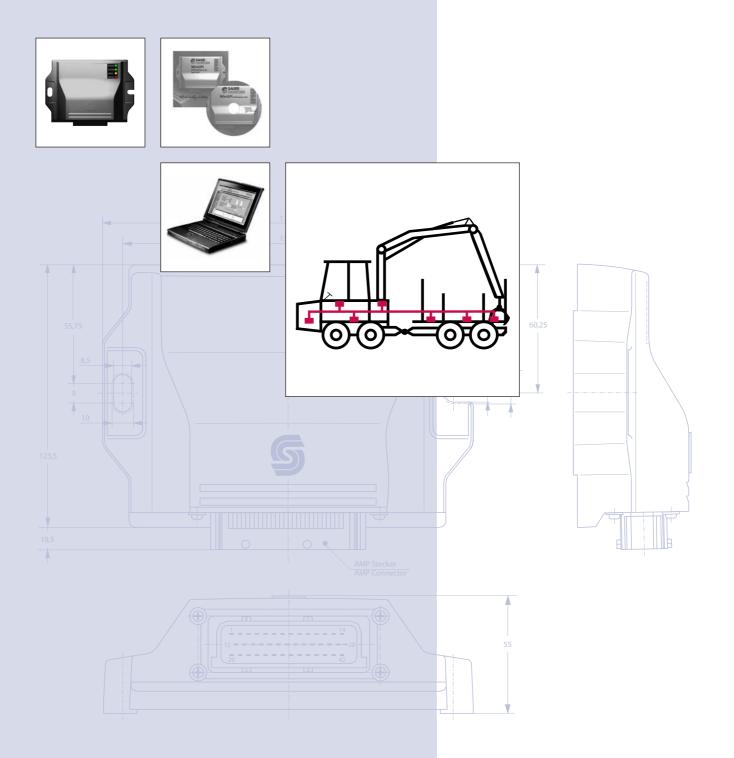
Index	Subindex	Parameter Name
2104	10	PVE8B
2104	11	PVPX
2105		Float PVE push mapping
2105	0	Number of entries
2105	1	PVE1
2105	2	PVE2
2105	3	PVE3
2105	4	PVE4
2105	5	PVE5
2105	6	PVE6
2105	7	PVE7
2105	8	PVE8


Parameterlist for Prof 1 CIP (shortened version of OD)

Index	Subindex	Parameter Name
1000		Device Type
1001		Error Register
1003		Pre-defined error field
1003	0	Number of Errors
1003	1	Last Error Occured
1004		Number of PDOs
1004	0	Number of PDOs supported
1004	1	Number of synchronous PDOs
1004	2	Number of asynchronous PDOs
1008		Device name
1009		Hardware Version
100A		Software Version
100B		Node-ID
100C		Guard Time
100D		Life time factor
100E		Node guarding ID
1011		Restore parameters
1011	0	Largest supported sub-index
1011	1	Restore all default parameters
1011	2	Restore communication default parameters
1011	4	Restore default function settings
1800		Number of parameters following
1800	0	Number of entries
1800	1	COB-ID used by PDO
1800	2	Transmission type
1A00		Transmit PDO mapping
1A00	0	Number of entries
1A00	1	Analog input 1
1A00	2	Analog input 2
1A00	3	Analog input 3
1A00	4	Analog input 4
1A00	5	Rest of Analog Inputs

Index	Subindex	Parameter Name
1A00	6	Digital input 1
3000		Baudrate
3002		Enable Guide function
3004		Enable Memory function
3005		Cyclic trigger
3006		Mapping structure
3006	0	Number of entries
3006	1	Prop 1
3006	2	Prop 2
3006	3	Prop 3
3006	4	Prop 4
3006	5	Push 3A
3006	6	Push 3B
3006	7	Push 4A
3006	8	Push 4B
3006	9	Push 5
3006	A	Push 6
3006	В	Push 7
3006	С	Push 8
3007		Memory function mapping
3007	0	Number of entries
3007	1	Proportional mapping
3007	2	Button used
6000		Digital input values
6000	0	Number of entries
6000	1	Read_8_Input_1H_8H
6401		Read_Analog_Input_16
6401	0	Number of entries
6401	1	Prop1
6401	2	Prop2
6401	3	Prop3
6401	4	Prop4

PVG CIP dimensions



Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

CAN Controller Area Network

Technical Information

SAUER CAN Controller Area Network Technical Information **Overview**

HISTORY	Forced by the increasing number of distributed control systems in cars and the increasing wiring costs of electronics, the availability of a powerful and reliable data communication system for the exchange of information between the different control units was becoming urgent. This was the starting point for BOSCH, a main provider of electronic car equipment to develop the CAN protocol and standardize it as an international standard in ISO 11898. 1989 the first protocol controller chip was provided by INTEL.
WHAT IS CAN	CAN is a serial bus system which is especially suited for connecting devices within a system or sub-system. These devices (nodes) can be intelligent devices as well as sensors and actuators. CAN is a serial bus system with multi-master capabilities, that means that all CAN nodes are able to transmit data and several CAN nodes can request access to the bus simultaneously. A transmitter sends a message to all CAN nodes (broadcasting). A CAN message can transmit from 0 up to 8 bytes of user information. Each CAN Message starts with a so called identifier followed by the data bytes. This identifier can be 11 Bit or 29 Bit wide. If the identifier is 11 bit wide, than it is a message in "standard format" (CAN specification 2.0 Part A). Otherwise it is a message in the "extended format" (CAN specification 2.0 Part B). Please be aware that not all CAN controller supports the extended format. Each node decides on the basis of the identifier received whether it should process the message or not. The identifier also determines the priority that the message have in competition for bus access. One of the outstanding features of the CAN bus is its high transmission reliability. The CAN protocol controller detects a stations error and evaluates it statistically in order to take appropriate actions. These may extend to disconnecting the CAN node producing the errors.

BENEFITS

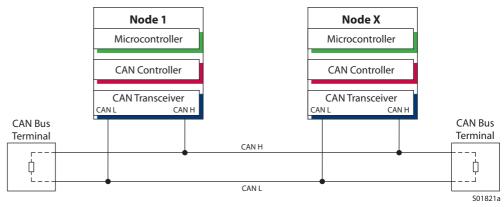
The use of a CAN system increases the flexibility of a system. One of the most obvious benefits is reduced wiring. A single two-wire bus is all that is needed to connect several CAN devices. This reduces costs, simplifies mechanical design, and makes it easier to insert additional devices into a system.

The key benefit of CAN, like any network, is that it makes it possible to share resources and information between devices. This means that one sensor can easily be shared between two or more controllers, or two controllers may share information about their respective subsystems. Instead of using point to point communications, any device on a CAN network can communicate with any other.

An additional benefit of this is that system diagnostics can be centralized and simplified. As a single device can access all of the devices on the CAN, it is possible to centralize diagnostic tools to a single access point.

© 2001, Sauer-Danfoss

Sauer-Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Sauer -Danfoss reserves the right to alter its products without prior notice. This also applies to products already ordered provided that such alterations can be made without subsequent changes being necessary in specifications already agreed. All trademarks in this material are properties of the respective companies. Sauer-Danfoss and the Sauer-Danfoss logotype are trademarks of the Sauer-Danfoss Group. All rights reserved.


CAN Controller Area Network SAUER CAN Controller Area N DANFOSS Technical Information **Overview**

BUS TOPOLOGY

According to ISO 11898 the CAN-Bus is realized by a cable with two lines. The bus cable is terminated at both ends by termination resistors (see figure 1).

Note: The stub cable, which is the cable from the bus cable to a node, is an unterminated cable and should be as short as possible.

Figure 1: CAN-Bus realization

BUS CABLES AND TERMINATION RESISTORS

The table below shows some standard values for CAN-networks according to ISO 11898 with less than 64 nodes and can be used as a kind of guideline. In addition, the cable should have following AC parameters:

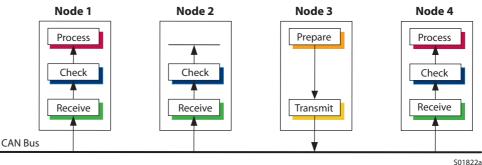
- A 120 Ω impedance and a 5 ns/m specific line delay.

	Bus cable			
Bus length	Length related	Cross section	Termination	Baud rate
[m]	resistance [m Ω /m]	[mm²]	resistance [Ω]	[Kbit/s]
040	70	0.250.34	120	1000 at 40 m
40300	<60	0.340.60	150 300	> 500 at 100 m
300600	<40	0.500.60	150 300	> 100 at 500 m
6001000	<26	0.750.80	150 300	> 50 at 1 km

DATA EXCHANGE

When data is transmitted through a CAN Network, no nodes are addressed, but instead, the content of the message (e.g. engine rpm or vehicle speed) is designated by an identifier that is unique throughout the network.

If the Microcontroller of a given node wishes to send a message to one or more nodes, it passes the data to be transmitted and their identifiers to the assigned CAN controller ("Prepare"). This is all the Microcontroller has to do: To initiate the data exchange. The message is constructed and transmitted by the CAN controller itself.



CAN Controller Area Network SAUER CAN Controller Area N DANFOSS Technical Information **Overview**

DATA EXCHANGE (continued)

As soon as the CAN controller receives bus access ("Transmit") all other nodes on the CAN network become receivers of this message ("Receive"). Each node in the CAN network, having received the message correctly, performs an acceptance test to determine whether the received data is relevant for that station ("Check"). If the data is of interest for the node it is processed ("Process"), otherwise ignored.

Figure 2: CAN network

HIGHER LEVEL PROTOCOLS

All the above mentioned specifications describes how data is physically transmitted through the CAN network but not what kind of data. This means that the CAN controller does not care with which identifier the engine RPM is transmitted. This is the task of the system designer. He has to design what data is transmitted through the bus. Due to that application specific data exchange solutions have been implemented.

These so called "proprietary" protocols are mainly not compatible to each other because they are optimized for a specific application.

In this case optimized means:

- Bandwidth usage of the bus
- Memory allocation in the control unit •
- Reaction time

For an open system approach several higher layer protocols have been envolved. Most popular protocols of that are:

- SAE J1939
- CANOpen
- CANKingdom

REFERENCES

- Robert Bosch GmbH: CAN specification 2.0 Part A+B (1991)
- CiA DS-102: CAN physical layer for industrial applications (1994)
- Konrad Etschberger (Hrsg.): Controller-Area-Network; Grundlagen, Protokolle, Bausteine, Anwendungen (2000)

SAUER CAN Controller Area Network Technical Information Notes

SAUER DANFOSS

OUR PRODUCTS

Hydrostatic transmissions

Hydraulic power steering

Electric power steering

Closed and open circuit axial piston pumps and motors

Gear pumps and motors

Bent axis motors

Radial piston motors

Orbital motors

Transit mixer drives

Planetary compact gears

Proportional valves

Directional spool valves

Cartridge valves

Hydraulic integrated circuits

Hydrostatic transaxles

Integrated systems

Fan drive systems

Electrohydraulic controls

Digital electronics and software

Battery powered inverter

Sensors

Sauer-Danfoss Hydraulic Power Systems – Market Leaders Worldwide

Sauer-Danfoss is a comprehensive supplier providing complete systems to the global mobile market.

Sauer-Danfoss serves markets such as agriculture, construction, road building, material handling, municipal, forestry, turf care, and many others.

We offer our customers optimum solutions for their needs and develop new products and systems in close cooperation and partnership with them.

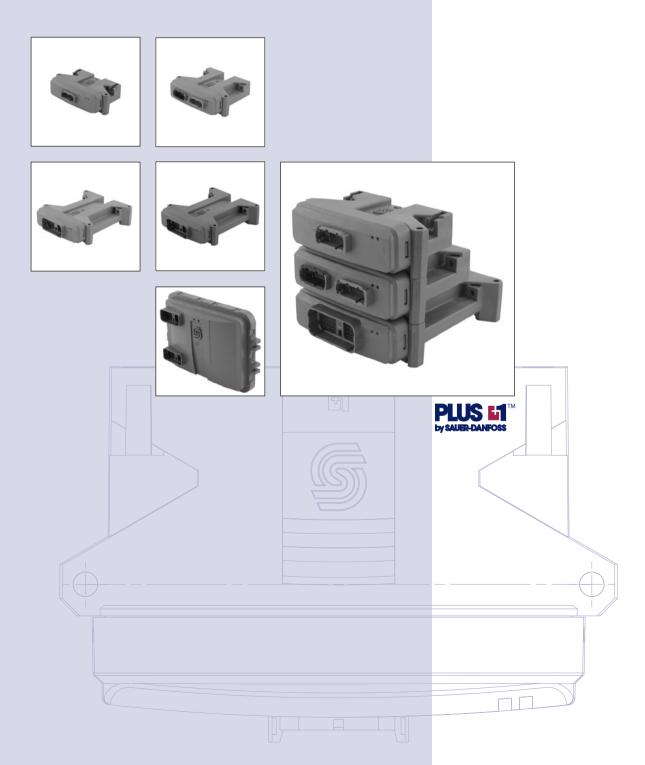
Sauer-Danfoss specializes in integrating a full range of system components to provide vehicle designers with the most advanced total system design.

Sauer-Danfoss provides comprehensive worldwide service for its products through an extensive network of Authorized Service Centers strategically located in all parts of the world.

Sauer-Danfoss (US) Company 2800 East 13th Street Ames, IA 50010, USA Phone: +1 515 239-6000, Fax: +1 515 239-6618

Sauer-Danfoss (Neumünster) GmbH & Co. OHG Postfach 2460, D-24531 Neumünster Krokamp 35, D-24539 Neumünster, Germany Phone: +49 4321 871-0, Fax: +49 4321 871-284

Sauer-Danfoss (Nordborg) A/S DK-6430 Nordborg, Denmark Phone: +45 7488-4444, Fax: +45 7488-4400


Sauer-Danfoss (US) Company 3500 Annapolis Lane North Minneapolis, MN 55447, USA Phone: +1 763 509-2084, Fax: +1 763 559-0108

www.sauer-danfoss.com

PLUS+1 Controller Family

Technical Information

PLUS+1 Controller Family Technical Information Revisions

Version

Revisions			
Date	Page	Changed	Rev.
23 June, 2009	13, 23	Correction regarding IX modules; MC050-055 Specifications table	HB
16 June, 2009	3, 6, 15, 18, 20, 21	General; and updated Memory /Communication Resources table	HA
02 June, 2009	Various	MC038-010, MC050-55 modules added	GA
23 Oct, 2008	All	Literature order number corrected at bottom of pages	FB
21 Jul, 2008	Various	General content update	FA
25 Sep, 2007	21	Corrected typo	EB
24 Sep, 2007	Various	Specifications update, added 88 pin module	EA
24 Oct, 2006	14	Paragraph added re: maximum current; specifications	D
21 Sep, 2006	5, 7-22	Specifications	С
29 Jun, 2005		General content update	В
24 Mar, 2004		First edition	А

© 2009 Sauer-Danfoss. All rights reserved.

Sauer-Danfoss accepts no responsibility for possible errors in catalogs, brochures and other printed material. Sauer -Danfoss reserves the right to alter its products without prior notice. This also applies to products already ordered provided that such alterations can be made without affecting agreed specifications. All trademarks in this material are properties of their respective owners. Sauer-Danfoss, the Sauer-Danfoss logotype, the Sauer-Danfoss S-icon, PLUS+1[™], what really matters is inside[®] and Know-How in Motion[™] are trademarks of the Sauer-Danfoss Group.

SAUER
DANFOSSPLUS+1 Controller Family
Technical Information Contents

Product Overview	About This Manual	5
	PLUS+1 Controller Family Technical Information	5
	What information is in this manual?	
	What information is in individual module product data sheets?	5
	What information is in individual module API specifications?	
	What information is in the PLUS+1 GUIDE Software User Manual?	5
	PLUS+1 Family of Mobile Machine Management Products	6
	PLUS+1 Module Naming Convention	6
	User Liability and Safety Statements	
	OEM Responsibility	7

Input/Output Types and	Input/Output Types
Specifications	Inputs
	Input Types
	Digital (DIN)
	Analog (AIN)
	A/D Refresh Rate
	Analog/Temperature/Rheostat (AIN/Temp/Rheo)10
	Digital/Analog/Frequency (DIN/AIN/FreqIN)
	(all modules except IX012-010, IX024-010)11
	Digital/Analog/Frequency (DIN/AIN/FreqIN)
	(IX012-010, IX024-010 modules)12
	Digital/Analog/4-20 mA (DIN/AIN/4-20 mA IN)14
	Outputs
	Output Types
	MC038-010, MC088-XXX Output Pin Power Supply15
	High Current Digital Outputs (HDOUT)
	High Current Proportional (HPWM/DOUT)19

Controller Area Networks	CAN (Controller Area Networks) Ports
Specifications	System Design
-	Terminating Resistor
	Expansion Module CAN bus Loading21

Product Ratings	Power	22
5	Module Supply Voltage/Maximum Current Ratings	22
	MC038-010 Power Supply	
	MC038-010 Sleep Mode	
	Sensor Power Supply Ratings	
	PVG Valve Power Supply	
	EEPROM Write/Erase Ratings	24
	Vault Memory	
	General, Maximum, and Environmental	

SAUER
DANFOSSPLUS+1 Controller Family
Technical Information Contents

Product Installation and	General Comments	26
Start-up	PLUS+1 Modules Environmental Ratings	26
	Housings	26
	Mating Connectors	
	Product Installation	28
	Mounting	28
	Machine Diagnostic Connector	28
	Grounding	28
	Hot Plugging	28
	Recommended Machine Wiring Guidelines	29
	Recommended Machine Equipped with PLUS+1 Module Welding Procedures	
	PLUS+1 USB/CAN Gateway	

About This Manual	PLUS+1 Controller Family Technical Information This manual is designed to be a comprehensive PLUS+1 [™] product family hardware reference tool for vehicle OEM design, engineering, and service personnel. It is one of four sources of PLUS+1 product technical information. Other sources include individual module product data sheets, module specific Application Program Interface (API) specifications and the <i>PLUS+1 GUIDE Software User Manual</i> , literature number 10100824 .
	What information is in this manual? This manual describes electrical details that are common to all PLUS+1 modules, including general specifications, input and output parameters, environmental ratings and installation details.
	 What information is in individual module product data sheets? Parameters that are unique to an individual PLUS+1 module are contained in the module product data sheet. Data sheets contain the following information: Numbers and types of inputs and outputs Module connector pin assignments Module maximum current capacity Module sensor power supply (if present) current capacity Module installation drawing Module weights Product ordering information
Module API specifications are the definitive source of information regarding PLUS+1 module pin	 What information is in individual module API specifications? Detailed information about the module BIOS is contained in the module API specification. PLUS+1 BIOS functionality is pin dependent. Pins are defined in module data sheets as <i>C</i> (connector number) <i>p</i> (pin number). API specifications include: Variable name Variable data type

- Variable data type
- Variable direction (read/write)
- Variable function and scaling

What information is in the PLUS+1 GUIDE Software User Manual?

Detailed information regarding the PLUS+1 GUIDE software tool set that is used to build PLUS+1 machine management solutions is contained in the user manual. This technical information manual covers the following broad topics:

- How to use the GUIDE graphical application development tool to create machine applications
- How to configure module input and output parameters
- How to download GUIDE applications to target PLUS+1 hardware modules
- How to upload and download tuning parameters
- How to use the PLUS+1 service tool

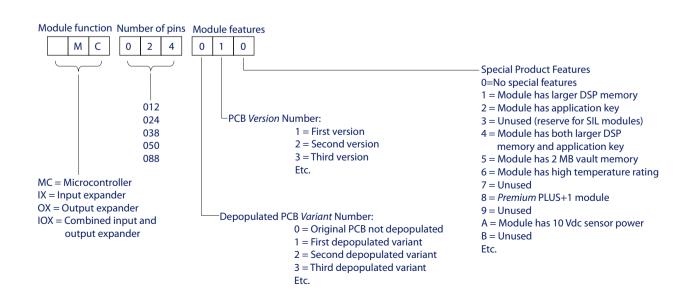
characteristics.

PLUS+1 product literature is available at: www.sauer-danfoss.com

PLUS+1 Controller Family Technical Information Product Overview

PLUS+1 Family of Mobile Machine Management Products 12, 24, 38, 50, and 88 Pin Models

F101753


P108012

PLUS+1 controllers and input/output expansion modules are designed to provide flexible, expandable, powerful, and cost effective total machine management systems for off-highway vehicles. These modules communicate with one another and other intelligent systems over a machine Controller Area Network (CAN) data bus. PLUS+1 hardware products are designed to be equally effective in a distributed CAN system, with intelligence in every node, or as stand-alone control for smaller machine systems. PLUS+1 systems are incrementally expandable: additional modules can be easily added to the machine CAN bus to increase system capabilities or computational power.

PLUS+1 control products utilize modular designs wherever possible. This modularity extends to product housings, connectors and control circuitry. Five standard housings, 12, 24, 38, 50, and 88 pin, cover the entire product line.

PLUS+1 Module Naming Convention

PLUS+1 Master Model Code (Example: MC 024 010)

SAUERPLUS+1 Controller FanDANFOSSTechnical Information PLUS+1 Controller Family **Product Overview**

User Liability and Safety Statements

OEM Responsibility

The OEM of a machine or vehicle in which PLUS+1 electronic controls are installed has the full responsibility for all consequences that might occur. Sauer-Danfoss has no responsibility for any consequences, direct or indirect, caused by failures or malfunctions.

- Sauer-Danfoss has no responsibility for any accidents caused by incorrectly mounted or maintained equipment.
- Sauer-Danfoss does not assume any responsibility for PLUS+1 products being incorrectly applied or the system being programmed in a manner that jeopardizes safety.
- All safety critical systems shall include an emergency stop to switch off the main supply voltage for the outputs of the electronic control system. All safety critical components shall be installed in such a way that the main supply voltage can be switched off at any time. The emergency stop must be easily accessible to the operator.

Input/Output TypesEach PLUS+1 hardware module has input or output pins that support multiple functions.
Pins that support multiple input or output types are user-configurable using PLUS+1
GUIDE software. Refer to product data sheets for the input/output (I/O) content of
individual modules.

This section provides technical information and specifications for each I/O type.

The following ratings apply to all PLUS+1 input and output types.

Absolute Rating for All PLUS+1 I/O

Description	Units	Minimum	Maximum	Comment
Input voltage	Vdc	0	36	Modules will survive with full functionality if input voltage does not exceed 36 Vdc

Inputs

Input Types

- Digital (DIN)
- Digital or Analog (DIN/AIN)
- Analog or Temperature or Rheostat (AIN/Temp/Rheo)
- Multifunction: Digital or Analog or Frequency (DIN/AIN/FreqIN)
- Fixed Range Analog or CAN shield (AIN/CAN shield)
- Digital or Analog or Current (DIN/AIN/4-20 mA IN)

Each input pin allows one of the above functional types. For pins with multiple functions, input configurations are user programmable using PLUS+1 GUIDE templates.

Digital (DIN)

Digital inputs connected to PLUS+1 dedicated digital input pins are debounced in software. Digital input debounce is defined as an input being in a given state for three samples before a state change is reported. The sample time is a function of application loop time.

Multifunction pins that are configured to be DIN are subject to the same update rates as the analog input function for that pin. Debounce is not used, as hysteresis is built into the function. The time to recognize a transition is dependent on the timing of the switch activation and the sample rate.

Description	Units	Minimum	Max	Comment
Allowed voltage at pin	Vdc	0	36	
Rising voltage threshold	Vdc	2.80	4.15	A digital input is guaranteed to be read as high if the voltage is greater than 4.15 Vdc
Falling voltage threshold	Vdc	1.01	2.77	A digital input is guaranteed to be read as low if the voltage is less than 1.01 Vdc
Time to change state in response to step input	ms		1.5	Input change from maximum to minimum - add to debounce time
Input impedance	kΩ	13.9	15.53	Depends on pin configuration

Inputs (continued)

General

General				
Feature	Comment			
Response to input below minimum voltage	Non-damaging, non-latching; reading saturates to the low limit			
Response to input above maximum voltage	Non-damaging, non-latching; reading saturates to the high limit			
Response to input open	Pin configuration dependent: No pull up/ no pull down = floating Pull up to 5 Vdc = 5 Vdc Pull down = 0 Vdc Pull up/ pull down = 2.5 Vdc			
Voltage working ranges	Programmable (see specific data sheets for ranges)			

Analog (AIN)

Module analog input offset error can be 80 counts out of 4096 (12 bit A/D resolution). Therefore, the minimum voltage that a module will read at the most common 0 to 5.25 Vdc range is 105 mV.

Specifications

Description	Units	Minimum	Maximum	Comment	
Allowed voltage at pin *	Vdc	0	36		
0 to 5 Vdc range Maximum discernable voltage	Vdc	5.21	5.30	5.26 is typical	
0 to 36 Vdc range Maximum discernable voltage	Vdc	34.62	35.91	35.26 is typical	
Precision	mV		1.28		
Input impedance	kΩ	206	236	Depends on pin configuration	

* Maximum allowed voltage on fixed range analog input pins (CAN shield) is 25 Vdc.

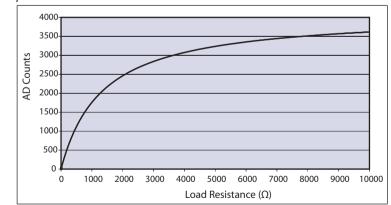
A/D Refresh Rate

A/D refresh rates for individual PLUS+1 modules are as follows. A/D channels are sampled at 25KHz and 64 samples are taken to build an average value. This results in a refresh rate of 2.56 ms for channels directly measured. All internal current feedback channels are refreshed at the 2.56 ms rate.

Some PLUS+1 module A/D channels are shared. Each of the shared channels has eight multiplexed analog inputs. Each multiplexed input is serviced every 20.48 ms. Update rates for specific analog input pins are found below. Update rates for input expander modules are dependent on the CAN message frequency selected in the application program.

Inputs (continued)

A/D Refresh Rate (continued)


A/D Update Rates for PLUS+1 Modules

PLUS+1 module	A/D refresh rate
MC012-010	All: 2.56 ms
MC024-010	All: 2.56 ms
MC024-020	C1p10 to C1p12: 7.68 ms Remaining pins: 2.56 ms
MC024-500	All: 2.56 ms
MC038-010	C1p08, C1p14, C1p17 to C1p20, C1p24 to C1p27, C1p36 to C1p38: 20.48 ms C1p05, C1p10 to C1p12: 2.56 ms
MC050-010	C1p05, C1p08, C1p14 to C1p19, C1p22 to C1p30, C1p34 to C1p36: 20.48 ms C1p02: 2.56 ms
MC050-020	C1p05, C1p22, C1p25 to C1p32, C1p39, C1p40: 20.48 ms C1p02, C1p08, C1p18, C1p19, C1p23, C1p24: 2.56 ms
MC050-055	C1p05, C1p13 to C1p29, C1p31 to C1p39, C1p41 to C1p45: 20.48 ms C1p46 to C1p49: 2.56 ms
MC088-015, MC088-315	C1p05, C1p08, C1p14 to C1p19, C1p22 to C1p30, C1p34 to C1p36, C1p47 to C1p50 , C2p09 to C2p11, C2p35 to C2p38: 20.48 ms
IOX012-010	Refresh rate is a function of CAN message frequency
IX012-010	Refresh rate is a function of CAN message frequency
IX024-010	Refresh rate is a function of CAN message frequency

Analog/Temperature/Rheostat (AIN/Temp/Rheo)

When a PLUS+1 module input pin is configured in the temperature/rheostat mode, the input has a 1.33 k Ω pull up resistor to +5 Vdc. It will source up to 3.75 mA current to an external load (RL) which then can be measured. The equation for relating AD counts to a given load is: AD counts = (4096*RL) / (RL + 1330). This calculation is solved internally and the ohms value is available for the programmer. The following chart shows the relationship between AD counts and load resistance in ohms.

Rheostat Inputs

P108013

Description	Units	Minimum	Maximum	Comment
Allowed voltage at pin	Vdc	0	36	

Inputs (continued)

Digital/Analog/Frequency (DIN/AIN/FreqIN) (all modules except IX012-010, IX024-010)

The characteristics of Digital/Analog/Frequency pins are GUIDE software controlled. The input can be digital, analog or frequency. Inputs can be pulled to 5 Vdc, pulled to ground, pulled to 2.5 Vdc, or no pull-up/pull-down.

General

Feature	Comment		
Response to input below minimum voltage	Non-damaging, non-latching; reading saturates to the low limit		
Response to input above maximum voltage	Non-damaging, non-latching; reading saturates to the high limit		
Expected measurement	Frequency (Hz)		
	Period (0.1 µsec)		
	Channel to channel phase shift (paired inputs) (0.1 ms)		
	PWM duty cycle (0.01%)		
	Edge count		
	Quadrature count (paired inputs driven from a quadrature encoder)		
Pull up/pull down configuration	No pull down/ pull up is standard with pull up or pull down programmable; failure modes are detectable		

As with analog input pins, values in the following table assume software compensation for AD converter offset errors.

Description	Units	Minimum	Maximum	Comment
Allowed voltage at pin	Vdc	0	36	
Frequency range	Hz	0	10000	In steps of 1 Hz
Maximum discernable voltage (high range)	Vdc	34.62	35.91	35.3 Vdc is typical
Maximum discernable voltage (middle range)	Vdc	5.18	5.33	5.26 Vdc is typical
Maximum discernable voltage (low range)	Vdc	0.360	0.375	0.368 Vdc is typical
Precision (high range)	mV	-	8.62	
Worst case error (high range)	mV	-	614	
Precision (middle range)	mV	-	1.28	
Worst case error (middle range)	mV	-	75	
Precision (low range)	μV	-	89.7	
Worst case error (low range)	mV	-	7.39	
Input impedance (pulled to 5 Vdc or ground, middle and low range)	kΩ	13.9	14.3	
Input impedance (pulled to 2.5 Vdc middle and low range)	kΩ	7.17	7.37	
Input impedance (no pull ups, middle and low range)	kΩ	230	236	
Input impedance (pulled to 5 Vdc or ground, high range)	kΩ	13.0	13.4	
Input impedance (pulled to 2.5 Vdc high range)	kΩ	6.92	7.12	
Input impedance (no pull ups, high range)	kΩ	108	112	

Inputs (continued)

should not be configured

MC050-010

as a FreqIN.

C1p26

Digital/Analog/Frequency (DIN/AIN/FreqIN) (all modules except IX012-010, IX024-010) (continued)

Specifications (continued)

Description	Units	Minimum	Maximum	Comment
Rising voltage threshold (high range)	Vdc	18.9	27.6	It is inadvisable to use the high range option when configuring the input as a digital or frequency input.
Falling voltage threshold (high range)	Vdc	6.8	18.5	It is inadvisable to use the high range option when configuring the input as a digital or frequency input.
Rising voltage threshold (middle range)	Vdc	2.92	4.12	A digital input is guaranteed to be read as high if the voltage is greater than 3.99 Vdc. These numbers also apply to frequency.
Falling voltage threshold (middle range)	Vdc	1.02	2.75	A digital input is guaranteed to be read as low if the voltage is less than 0.96 Vdc. These numbers also apply to frequency.
Rising voltage threshold (low range)	Vdc	0.197	0.298	A digital input is guaranteed to be read as high if the voltage is greater than 0.28 Vdc.
Falling voltage threshold (low range)	Vdc	0.071	0.192	A digital input is guaranteed to be read as low if the voltage is greater than 0.067 Vdc.

Digital/Analog/Frequency (DIN/AIN/FreqIN) (IX012-010, IX024-010 modules)

The characteristics of Analog/Digital/Frequency pins are GUIDE software controlled. The input can be digital, analog or frequency. Inputs can be pulled to 5 Vdc, pulled to ground, or pulled to 2.5 Vdc.

As with analog input pins, values in the following table assume software compensation for the errors in the AD converter.

Description	Units	Minimum	Maximum	Comment
Allowed voltage at pin	Vdc	0	36	
Frequency range	Hz	0	10000	In steps of 1 Hz
Maximum discernable voltage (high range)	Vdc	35.3	36	36 Vdc is typical
Maximum discernable voltage (middle range)	Vdc	5.67	5.83	5.75 Vdc is typical
Maximum discernable voltage (low range)	Vdc	0.440	0.456	0.448 Vdc is typical
Minimum discernable voltage	Vdc	0	0.08	
Precision (high range)	mV	-	36.5	
Worst case error (high range)	mV	-	614	
Precision (middle range)	mV	-	5.62	
Worst case error (middle range)	mV	-	75	
Precision (low range)	μV	-	438	
Worst case error (low range)	mV	-	7.39	
Input impedance (pulled to 5 Vdc or ground, middle and low range)	kΩ	13.9	14.3	

Inputs (continued)

Digital/Analog/Frequency (DIN/AIN/FreqIN) (IX012-010, IX024-010 modules) (continued)

Specifications (continued)

Description	Units	Minimum	Maximum	Comment
Input impedance (pulled to 2.5 Vdc middle and low range)	kΩ	7.17	7.37	
Input impedance (no pull ups, middle and low range)	kΩ	230	236	
Input impedance (pulled to 5 Vdc or ground, high range)	kΩ	10.3	10.7	
Input impedance (pulled to 2.5 Vdc high range)	kΩ	6.07	6.27	
Input impedance (no pull ups, high range)	kΩ	36.4	38.4	

This table shows the rising and falling thresholds when the input is used as a digital or frequency input.

C	~ ~	-:		
2	DPI	1110	atic	ms
~			0.00	

Description	Units	Minimum	Maximum	Comment
Rising voltage threshold (high range)	Vdc	-	-	It is inadvisable to use the high range option when configuring the input as a digital or frequency input.
Falling voltage threshold (high range)	Vdc	-	-	It is inadvisable to use the high range option when configuring the input as a digital or frequency input.
Rising voltage threshold (middle range)	Vdc	2.85	4.03	A digital input is guaranteed to be read as high if the voltage is greater than 4.03 Vdc. These numbers also apply to frequency.
Falling voltage threshold (middle range)	Vdc	1.15	2.59	A digital input is guaranteed to be read as low if the voltage is less than 1.15 Vdc. These numbers also apply to frequency.
Rising voltage threshold (low range)	Vdc	0.22	0.31	A digital input is guaranteed to be read as high if the voltage is greater than 0.31 Vdc.
Falling voltage threshold (low range)	Vdc	0.090	0.20	A digital input is guaranteed to be read as low if the voltage is greater than 0.090 Vdc.

Potential for IX modules to not go online. If voltage is applied to an IX module input pin prior to the module being powered on, there is a possibility that the module CPU will not power up. The module is not damaged and will power up and operate normally once power is removed from the input pins. It is recommended that either the IX module's 5 Vdc sensor power be used to power sensors or that power is removed from the input pins until the module is powered up.

Inputs (continued)

Digital/Analog/4-20 mA (DIN/AIN/4-20 mA IN)

Refer to Analog/Digital/Frequency *Specifications* table, page 12, for input properties when pins are configured as digital, analog or frequency. If the pin is configured to read current, the table below applies. When interfacing with sensors that transmit a 4 to 20 mA current signal, the positive lead of the transmitter is connected to battery voltage and the negative lead is connected to the PLUS+1 module pin. The current measuring configuration relies on the application program to provide over current protection.

The current measuring configuration is only available on MC088-XXX modules.

Description	Units	Minimum	Maximum	Comment
Allowed voltage at pin	Vdc	0	36	
Minimum input current	mA	3	4	
Maximum input current	mA	20	24	
Precision	μA		5.86	

Outputs

Output Types

PLUS+1 control modules feature user-configurable output circuits. Output parameters are configured using PLUS+1 GUIDE templates. Refer to module data sheets for maximum current ratings of individual modules, and MC038-010 and MC088-015 power planes. The following output types are supported:

- Digital (DOUT, DOUT/PVG Pwr)
- Proportional (PWMOUT/DOUT/PVGOUT)
- High current digital (HDOUT) MC038-010 and MC088-015 module
- High current proportional (HPWM/DOUT) MC038-010 module

MC038-010, MC088-XXX Output Pin Power Supply

The controller DSP will be powered if power is supplied to any one of the controller's power planes. The output pin power supply design of the MC038-010 and MC088-XXX controllers is different from that of other PLUS+1 modules. MC038-010 and MC088-XXX controllers have discrete power supply planes for output pins and a separate dedicated power supply for the DSP. Each output pin is associated with a specific power supply plane. Refer to the controller data sheets for a map of outputs and their associated power plane.

A Warning

Potential uncommanded machine movement. If battery voltage is applied to a module output pin when the module is not powered the module will be powered up. If significant current is driven back through an output pin, the module will be damaged, and the warranty voided.

A Warning

Potential uncommanded machine movement. DOUT and HDOUT digital outputs do not have an internal feedback to the PLUS+1 module kernel. If the application requires fault detection, an external feedback using an AIN configured pin must be used. External feedback is required if the actual output is to be read by the PLUS+1 Service Tool.

All other output types have internal feedback to the PLUS+1 module kernel that provide pin fault and status information that can be read directly by the application and the PLUS+1 Service Tool.

Outputs (continued)

Digital (DOUT, DOUT/PVE Pwr)

Digital outputs can source up to 3 A (exception: MC038-010 DOUT pins are limited to 2 A). However, the total output current for any PLUS+1 module must not exceed the maximum allowable current specified in the module data sheet. In the case of MC088-XXX modules, the total output current for an individual power plane and the total output current for the module must not exceed the limits specified on the data sheet.

- Current outputs for MC050-010, MC050-020, MC088-015, and OX024-010 module DOUT and DOUT/PVG Pwr pins are pair limited and a function of temperature. Output per pair is:
- 6 A maximum at 25° C [77° F]. Output per pair is 4 A maximum at 70° C [158° F]
- MC050-010 pairs are: C1p31 and C1p32, C1p33 and C1p34, C1p35 and C1p36
- MC050-020 pairs are: C1p33 and C1p34, C1p35 and C1p36, C1p37 and C1p38, C1p39 and C1p40
- MC088-015 pairs are: Power plane C2p35: C1p31 and C1p32, C1p33 and C1p34 Power plane C2p36: C1p35 and C1p36 Power plane C2p37: C2p1 and C2p7, C2p2 and C2p3, C2p4 and C2p5, C2p30 and C2p33

 Power plane C2p38: C2p6 and C2p12
- OX024-010 pairs are: C1p6 and C1p7, C1p8 and C1p9, C1p10 and C1p11
- Example: at a module temperature of 70° C [158° F], if C1p31 is sourcing 2.5 A, the most current that can be sourced on its paired pin C1p32 is 1.5 A

C -		
(JP	np	rai

Feature	Comment
Configuration	Sourcing only
Туре	Linear switching
Short circuit to ground protection	Non-damage, current/thermal limit with status indication; automatic latch off /resume
Open circuit detection	Fault indication provided. The GUIDE Pin Status requires a load of 500 mA to be connected or an open fault will be declared.
Parallel operation	Digital outputs from the same module are capable of being connected together such that the net current rating is the sum of the individual ratings; timing is resolved by the operating system; diagnostic capability is maintained
Shut off	Processor control with hardware WatchDog override

Description	Units	Minimum	Maximum	Comment
Allowed voltage at pin	Vdc	0	36	See caution statement below
Output voltage, energized state	Vdc	Vbatt-1.0	Vbatt	Over all load conditions
Output voltage, off state	Vdc	0	0.1	At Rload=200 Ω
Output current range for a status bit to read OK	A	0.5	3	See pair note, above

Outputs (continued)

High Current Digital Outputs (HDOUT)

High current digital outputs can source up to 6 amps.

General

Feature	Comment
Configuration	Sourcing only
Туре	Linear switching
Short circuit to ground protection	Non-damage, current/thermal limit with status indication; automatic latch off/resume
Open circuit detection	Status indication provided. The GUIDE pin status requires a load of 1000 mA to be connected or an open status will be declared
Parallel operation	Digital outputs from the same module are capable of being connected together such that the net current rating is the sum of the individual ratings: timing is resolved by the operating system and diagnostic capability is maintained.
Shut off	Processor control with hardware Watchdog override

Specifications

Description	Units	Minimum	Maximum	Comment
Allowed voltage at pin	Vdc	0	36	See caution statement below
Output voltage, energized state	Vdc	Vbatt-1.0	Vbatt	Over all load conditions
Output voltage, off state	Vdc	0	0.1	At Rload=200 Ω
Output current range for status bit to read OK	A	1	6	See pair comment above

A Warning

Potential uncommanded machine movement. If battery voltage is applied to a module output pin when the module is not powered the module will be powered up. If significant current is driven back through an output pin, the module will be damaged, and the warranty voided.

Outputs (continued)

Proportional (PWMOUT/DOUT/PVGOUT)

All PLUS+1 Module proportional outputs are Pulse Width Modulated (PWM). PWM frequency is software adjustable using GUIDE. A low frequency dither may also be added with software to any of the outputs. There are two modes of PWM operation: open loop and closed loop.

In open loop mode, current can be sourced or sunk (all modules are limited to 8 amps sinking), but the output is a PWM duty cycle. Current feedback may be monitored in open loop mode, but the output is a constant voltage, not a constant current. PVG valves may be driven with open loop PWM.

In closed loop mode, current is sourced and a constant current is maintained by the module's operating system using internal current feedback. Load impedance must not exceed 65 ohms.

The maximum current is limited by measuring the feedback current. There is no thermal protection. If the maximum current is exceeded, the controller kernel will shut down the output and latch it. The kernel also limits how quickly the output can be repowered (250 ms). The output cannot be reset until the command goes to 0 or False (if configured as a digital output).

Proportional outputs that are used as a digital sinking output have a potential for a leakage current of up to 5 mA when off.

Refer to individual module data sheets for the maximum allowable output current for each PLUS+1 module.

Feature	Comment
Configuration	Sourcing or sinking
Type (Linear vs. PWM)	PWM
Operating modes	Programmable: closed loop current or open loop voltage (duty cycle)
Dual coil PCPs	Compensated for induced currents in a non-driven coil (closed loop mode)
Short circuit to ground	Output fully protected against damage and fault detected
Mode selection (current or voltage) and full scale current ranges	Programmable

General

Outputs (continued)

Proportional (PWMOUT/DOUT/PVGOUT) (continued)

Specifications

Description	Units	Minimum	Maximum	Comment
Full scale proportional current output	mA	10	3000	The current may accidently be exceeded in open loop mode. If the current exceeds the trip point, the output will be latched off.
Output voltage, 100% duty cycle	Vdc	0	Vbatt-1	
Output resolution of 3 A	mA		0.25	
Repeatability of full range	% of full scale		0.5	
Absolute accuracy of full range	% of full scale		0.5	
Output settling time	ms		100	Depends on load characteristics
PWM frequency	Hz	33	4000	Some pins have a fixed frequency, consult module application program interface (API)
Dither frequency	Hz	33	250	Increased in steps, see module API
Dither amplitude	A	0	0.5	Increased in steps, see module API
Over-current trip point	A	5	5.25	There is over-current protection built into each output driver. If the instantaneous current exceeds the trip point, the driver is latched off. GUIDE application software can reset the latch and attempt to drive current again.

High Current Proportional (HPWM/DOUT)

High current proportional outputs are unique to the MCO38-010 controller. These outputs are PWM, with PWM frequency software adjustable using GUIDE.

All high current proportional outputs are operated as open loop. The controller kernel does, however, monitor current for circuit protection, but there is no current feedback to the application. The output is a constant voltage and not a constant current. PWM outputs are hardware protected from short or over current.

The MC038-010 has two types of PWM outputs: paired bi-directional PWMs (10 A) that can be configured as H bridges or independent outputs and sourcing only PWMs (6 A and 10 A). See the product data sheet and API documents for pair assignments.

Description	Units	Minimum	Maximum	Comment
Over-current trip point, 6 A	А		12	Temperature dependent.
Over-current trip point, 10 A	А		18	Temperature dependent.
PWM frequency	Hz	33	4000	

SAUERPLUS+1 Controller FailDANFOSSTechnical Information PLUS+1 Controller Family **Controller Area Networks Specifications**

CAN (Controller Area Networks) Ports

System Design

All PLUS+1 modules have CAN ports that conform to CAN 2.0B specifications, including CAN shield.

The second (CAN1) port on MC050-010 and MC050-020 controllers may not interface with the PLUS+1 Service Tool, depending on the version of .hwd file used to build the application. MC050-010 .hwd files version 190 and higher allow communication with the PLUS+1 Service Tool. MC050-020 .hwd files version 150 and higher allow communication with the PLUS+1 Service Tool. Regardless of .hwd version, CAN1 port and CAN2 port on MC050-055 controllers cannot be used to download GUIDE application programs.

A Warning

Potential uncommanded machine movement. Machine performance may be impaired if CAN communications are disrupted by electrical fields in excess of 30 V/m between 20 and 30 MHz. To prevent potential uncommanded machine movement and to meet EMC requirements, a shielded CAN bus must be used to achieve 100 V/m immunity.

Terminating Resistor

Each end of the main backbone of the CAN bus must be terminated with an appropriate resistance to provide correct termination of the CAN H and CAN L conductors. This termination resistance should be connected between the CAN_H and CAN_L conductors.

Description	Units	Minimum	Maximum	Nominal	Comment
Resistance	Ω	110	130	120	Minimum power dissipation 400 mW (assumes a short of 16 Vdc to CAN_H)
Inductance	μH		1		

Expansion Module System designers incorporating PLUS+1 expansion modules in their applications should CAN bus Loading be aware of PLUS+1 CAN bus loading and controller memory usage during system design. Each expansion module is associated with a PLUS+1 controller and uses part of the controller's memory resources for inter-module communications. The table below can be used to estimate system CAN bus loading and the memory impact of I/O modules

on their associated controller.

	IX012-010	IX024-010	OX012-010	OX024-010	IOX012-010	IOX024-20
Estimated module bus load (using default update and 250K bus speed)	4%	10%	11%	27%	11%	27%
Estimated module bus load (using 70 ms updates and 250K bus speed)	2%	5%	3%	8%	4%	8%
RAM usage on MC012-XXX	9%	12%	9%	14%	9%	17%
RAM usage on MC024-010	9%	12%	9%	14%	9%	17%
RAM usage on MC024-011	9%	12%	9%	14%	9%	17%
RAM usage on MC038-010	9%	12%	9%	18%	9%	26%
RAM usage on MC050-010, MC050-020	1%	1%	1%	2%	1%	2%
RAM usage on MC050-055	1%	1%	1%	2%	1%	0%
RAM usage on MC088-010	1%	1%	1%	2%	1%	2%
ROM usage on MC012-XXX	8%	11%	12%	18%	10%	19%
ROM usage on MC024-010	8%	11%	12%	18%	10%	20%
ROM usage on MC024-011	3%	4%	4%	6%	3%	7%
ROM usage on MC038-010	8%	11%	12%	18%	10%	21%
ROM usage on MC050-010, MC050-020	3%	4%	4%	6%	3%	8%
ROM usage on MC050-055	3%	4%	4%	6%	3%	8%
ROM usage on MC088-015	3%	4%	4%	6%	3%	7%

Estimated Usage of Memory and Communication Resources

Power

Module Supply Voltage/Maximum Current Ratings

PLUS+1 modules are designed to operate with a nominal 9 to 32 Vdc power supply. The modules will survive with full functionality if the supply voltage remains below 36 Vdc.

Specifications

Description	Units	Minimum	Maximum	Comment
Allowed voltage at pin	Vdc	0	36	
Allowed module current	A	0		Consult module data sheets for maximum allowable current

Caution

PCB damage may occur. To prevent damage to the module all module power supply + pins must be connected to the vehicle power supply to support advertised module maximum output current capacity. DO NOT use module power supply + pins to supply power to other modules on a machine.

MC038-010 Power Supply

The MC038-010 controller's power supply design recommendations must be followed:

- Power supply to MC038-010 controller's output power planes (C1-p36 to C1-p38) must be wired directly to the vehicle battery and the wiring runs must be kept as short as possible.
- Power supply to the controller's DSP (C1-p2) must be wired separately from the power supply to the controller's output power planes.
- Do not connect any other PLUS+1 controllers to the power supply to MC038-010 controller's output power planes.

MC038-010 Sleep Mode

Sleep mode is unique to the MC038-010 controller. This feature gives OEM designers the ability to implement automotive-like features in their machine control system design. If the sleep mode feature is not implemented, this controller has the same operating characteristics as any other PLUS+1 controller.

When used as a sleep mode controller, supply power to the MC038-010 is connected directly to the battery. Sleep mode initiation is defined by the controller's application software: PLUS+1 GUIDE programmers define the conditions under which the controller is to put to sleep. When in sleep mode, controller outputs are set to zero, sensor power supply is off and the controller consumes a small amount of current.

Controller Sleep Mode Current Consumption

Supply voltage	Sleep mode current consumption
12 Vdc	0.14 mA
24 Vdc	0.28 mA

Power (continued)

MC038-010 Sleep Mode (continued)

Either of two conditions will wake up the controller:

- Switching of any of the designated (in the GUIDE application) wake-up digital inputs (DIN) to high.
- Cycling all input power to the controller.
- The following input pins may be designated as wake-up digital inputs:
- DIN (C1p06, C1p07)
- DIN/AIN (C1p14, C1p17 to C1p20, C1p24 to C1p27

Specifications

Description	Units	Minimum	Maximum	Comment
Wake-up pin threshold	Vdc	2	36	To wake up by cycling input power
Wake-up pin threshold	Vdc	4.5	36	To wake up by digital input
Wake-up time delay	mSec	250	500	

Sensor Power Supply Ratings

PLUS+1 modules that support sensor inputs are provided with dedicated regulated sensor power supply and ground pins. Refer to individual product data sheets for sensor power supply current ratings. The sensor power is nominally 5 Vdc, unless otherwise noted on the product data sheet.

General

Feature	Comment
Short circuit to ground	Output is not damaged and fault is detected
Short circuit to battery +	Will not energize an otherwise un-powered controller; output is
	not damaged and fault is detected

Specifications (all modules except MC050-055)

Description	Units	Minimum	Maximum	Comment
Output short circuit voltage	Vdc		36	
Output voltage	Vdc	4.88	5.12	
Output current	mA			Refer to individual data sheets for sensor power supply ratings
Output Load Capacitance	μF		10	
Hold up time after power loss	ms	5	15	

The MC050-055 controller features two additional levels of regulated power: 1.6 Vdc and 3.3 Vdc. The PLUS+1 GUIDE application developer can detect open and short digital inputs, when these power supplies are used in conjunction with DIN/AIN inputs.

Specifications (MC050-055)

Description	Units	Minimum	Maximum	Comment
Output short circuit voltage	Vdc		36	
Output voltage, sensors	Vdc	4.88	5.12	Sensor power supply drops below minimum if controller power supply is less than 9 Vdc
Output voltage, DIN diagnostics	Vdc	1.54	1.66	Nominal 1.6
Output voltage, DIN diagnostics	Vdc	3.00	3.60	Nominal 3.3

Battery power must be supplied to designated wake-up digital inputs, since the controller's 5 Vdc regulated power supply is not available when the controller is in sleep mode.

Power	continued)
-------	-----------	---

PVG Valve Power Supply

DOUT/PVG Pwr pins can provide the battery supply voltage required by Sauer-Danfoss PVG valve electronics for those control strategies requiring application software control of the valve power source.

When enabled, the DOUT/PVG Pwr pin passes battery (reference) voltage to the PVG valve electronics. One DOUT/PVG Pwr pin can power up to 3 PVG valves. Refer to individual module API documents for PVG power pin characteristics.

EEPROM Write/Erase

Ratings

Specifications

Description	Minimum	Maximum	Comment
EEPROM write/erase cycles	1,000,000		Minimum valid over entire operating
(all modules except IX012-010, IX024-010)			temperature range
EEPROM write/erase cycles	10,000		Minimum valid over entire operating
(IX012-010, IX024-010)			temperature range

To prevent unexpected memory writes, care must be taken to ensure memory with a high number of read/write cycles is either U32 or S32 data types.

EEPROM used in PLUS+1 controllers is rated for 1,000,000 read/write cycles per sector. Sector size is 32 bits. When a value is written to EEPROM, all 32 bits in a particular sector are always written, regardless of the size of the size of the saved value. If the value being saved in a sector is less than 32 bits (e. g. U8, S16, BOLL, etc) adjacent bits in the same EEPROM sector are rewritten with their previous value. The implication of this memory property is that if two values are being written to the same memory sector, the useful life of the sector is determined by the value being written most frequently. If that value exceeds 1 million read/write cycles, all values in the sector may be compromised if the useful life is exceeded.

Vault Memory

Some variants of PLUS+1 modules have 2 MByte of flash vault memory (also referred to as *application logging memory*).

Application developers can use this memory to log machine event data and use the PLUS+1 Service Tool to extract the logged data. As there is no real time clock on PLUS+1 modules, vault memory is not time stamped.

SAUER PLUS+1 Controller Family Technical Information

General, Maximum, and Environmental

General Ratings

Description	Comment
Reversed polarity protection	Modules will withstand reversed polarity at supply voltage
Short circuit protection	All inputs and outputs will withstand continuous short circuit to any other leads; when the short circuit is removed, the module will return to normal function
Automotive electrical transients	ISO 7637/2 electrical transient conduction along supply lines
	ISO 7637/3 electrical transient transmission by capacitive and inductive coupling via lines other than supply lines
EMC	Modules conform to 2004/108/EC directive
	ISO 14982 agricultural and forestry machinery
	ISO 13766 earth moving machinery
Electrostatic discharge	EN 61000-4-2 electromagnetic compatibility—electrostatic discharge immunity test: 15 kV air discharge, 8 kV contact
	SAE J1113-13 8 kV pin direct contact discharge

Absolute Minimum/ Maximum Ratings

Description	Units	Minimum	Maximum	Comment
Operating temperature	°C [°F]	-40 [-40]	70 [158]	
Storage temperature	°C [°F]	-40 [-40]	100 [212]	
Supply voltage	Vdc	9	36	
Sensor voltage	Vdc	4.8	5.2	Sensor voltage drops out if supply voltage < 9 Vdc. Exception for MC050-055, see <i>Sensor Power</i> <i>Supply Ratings</i> , page 22.
Analog input levels	Vdc		36	
Output load current (per pin)				See individual module date sheets.
Module total output current				See individual module data sheets.

All PLUS+1 modules are CE compliant

PLUS+1 Controller Family **Technical Information Product Installation and Start-up**

General Comments

PLUS+1 Modules Environmental Ratings

Environmental Ratings

	Mechanical Environment	Climate Environment
	IEC 60068-2-61, Test Fc	IEC 60068-2-38
The PLUS+1 module IP	(Random vibration, 10-250 Hz)	(Temperature and humidity)
67 rating is only valid	IEC 60068-2-27, Test Ea	IEC 60529
when the module mating	(Shock, 11 ms)	(Degrees of protection)
connector is in place.	IEC 60068-2-29B	DIN 40050
	(Bump, 6 ms)	(High pressure wash)
	IEC 60068-2-32	IEC 60068-2-11 test Ka
	(Free fall, 1000 mm)	(Salt mist)
		IEC 60068-2-1 tests Ab, Ad
		(Cold test)
Mating connectors must		IEC 600-2-2 tests Bb, Bd
have proper sealing plugs		(Dry heat)
on all unused connector		IEC 60068-2-30 test Db
pins.		(Cyclic damp heat)
		IEC 60068-2-14 test Nb
		(Temp change)
		ISO/DIS 16750-5
		(Chemical resistance)

Housings

PLUS+1 module housings feature a snap together assembly that is tamper-proof. Once assembled at the factory, the housings cannot be opened for service. If opened the factory warranty will be voided.

PLUS+1 Controller Family SAUER PLUS+1 Controller Fan DANFOSS Technical Information Product Installation and Start-up

General Comments (continued)

Mating Connectors

data sheet for each module.

PLUS+1 modules use Deutsch® connectors. Sauer-Danfoss has assembled a mating connector kit, referred to as a bag assembly, for the 12, 24, 50, and 88 pin module housings. Mating connector bag assembly ordering information is found in the product

Description	12 pin module	24 pin module	38 pin module	50 pin module	88 pin module
Crimp tool	HDT48-00 (solid contacts) (20 to 24 AWG)	HDT48-00 (solid contacts) (20 to 24 AWG)		HDT48-00 (solid contacts) (20 to 24 AWG)	HDT48-00 (solid contacts) (20 to 24 AWG,
	DTT20-00 (stamped contacts) (16 to 20 AWG)	DTT20-00 (stamped contacts) (16 to 20 AWG)	DTT20-00 (stamped contacts) (16 to 20 AWG)	DTT20-00 (stamped contacts) (16 to 20 AWG)	12 to 14 AWG)
Contacts	Solid: 0462-201-12031 (20 to 24 AWG)	Solid: 0462-201-12031 (20 to 24 AWG)	Stamped: 0462-203-12141	Solid: 0462-201-12031 (20 to 24 AWG)	Solid: 0462-201-12031 (20 to 24 AWG)
	Stamped: 1062-20-0144 (16 to 20 AWG)	Stamped: 1062-20-0144 (16 to 20 AWG)	(10 to 14 AWG) 1062-20-0144 (16 to 20 AWG)	Stamped: 1062-20-0144 (16 to 20 AWG)	Solid: 0462-201-12141 (12 to 14 AWG)
Connector plug	Gray A-Key DTM 06-12SA	Gray A-Key DTM 06-12SA Black B-Key DTM 06-12SB	DRC26-38S01-P017	DRC26-50501	DRC26-50S01 DRC26-38S01-P017
Wedge	WM-12S	WM-12S	Not required	Not required	Not required
Strip length	3.96 to 5.54 mm [0.156 to 0.218 in]	3.96 to 5.54 mm [0.156 to 0.218 in]	6.43 to 0.79 mm [0.253 to 0.031 in]	3.96 to 5.54 mm [0.156 to 0.218 in]	20 to 24 AWG: 3.96 to 5.54 mm [0.156 to 0.218 in]
					12 to 14 AWG: 6.43 to 0.79 mm [0.253 to 0.031 in]
Rear seal maximum	3.05 mm [0.120 in]	3.05 mm [0.120 in]	4.32 mm [0.17 in]	2.41 mm [0.095 in]	20 to 24 AWG: 2.41 mm [0.095 in]
insulation OD					12 to 14 AWG: 4.32 mm [0.17 in]
Sealing plugs	0413-204-2005	0413-204-2005	114017	0413-204-2005	0413-204-2005, 114017

Deutsch Matina Connector Part Information

Sauer-Danfoss Mating Connector Part Information

Description	12 pin module	24 pin module	38 pin module	50 pin module	88 pin module
Mating connector bag assembly (20 to 24 AWG)	10100944	10100945		10100946	10105649
Mating connector bag assembly (16 to 20 AWG)	10102025	10102023	11027919	10102024	

Sauer-Danfoss Crimp Tool Part Information

Description	Part number
Crimp tool for 20 to 24 AWG	10100745
Crimp tool for 16 to 20 AWG	10102028

PLUS+1 module mating connectors may be mated 10 times.

Recommended torque for the Deutsch® mating connector retaining fastener on 38 and 50 pin connectors is 20 lb•in (2.26 N•m).

PLUS+1 Controller Family Technical Information Product Installation and Start-up

Product Installation

Mounting

PLUS+1 12, 24, 38, and 50 pin modules can be mounted in one of three ways:

- End (bulkhead) installation
- Up to 3 units stacked on one another
- Individually side mounted

MC088-XXX modules are designed for bulkhead mounting only.

In each case, care must be taken to insure that the module connector is positioned so that moisture drains away from the module. If the module is side or stack mounted, provide a drip loop in the harness. If the module is mounted vertically, the connector should be on the bottom of the module. Provide strain relief for mating connector wires.

Caution

Module damage may occur. Use caution when installing MC050-XXX modules. Due to the size of the mating connector wire bundle, it is possible to twist off the end cap of the module if excessive pressure is applied during the installation of harness strain relief.

Suggested Fasteners and Recommended Installation Torque

Mounting method	Recommended OD	Recommended torque
Bulkhead mount; multiple units stacked; single	6.0 mm (.25 in)	9.49 N•m (7 ft•lb)

Machine Diagnostic Connector

It is recommended that a diagnostic connector be installed on machines that are controlled by PLUS+1 modules. The connector should be located in the operator's cabin or in the area where machine operations are controlled and should be easily accessible.

Communication (software uploads and downloads and service and diagnostic tool interaction) between PLUS+1 modules and personal computers is accomplished over the vehicle CAN network. The diagnostic connector should tee into the vehicle CAN bus and have the following elements:

- CAN +
- CAN -
- CAN shield

Grounding

Proper operation of any electronic control system requires that all control modules including displays, microcontrollers and expansion modules be connected to a common ground. A dedicated ground wire of appropriate size connected to the machine battery is recommended.

Hot Plugging

Machine power should be off when connecting PLUS+1 modules to mating connectors.

Product Installation
(continued)

Recommended Machine Wiring Guidelines

- 1. All wires must be protected from mechanical abuse. Wires should be run in flexible metal or plastic conduits.
- 2. Use 85° C [185° F] wire with abrasion resistant insulation. 105° C [221° F] wire should be considered near hot surfaces.
- 3. Use a wire size that is appropriate for the module connector.
- 4. Separate high current wires such as solenoids, lights, alternators or fuel pumps from sensor and other noise-sensitive input wires.
- 5. Run wires along the inside of, or close to, metal machine surfaces where possible. This simulates a shield which will minimize the effects of EMI/RFI radiation.
- 6. Do not run wires near sharp metal corners. Consider running wires through a grommet when rounding a corner.
- 7. Do not run wires near hot machine members.
- 8. Provide strain relief for all wires.
- 9. Avoid running wires near moving or vibrating components.
- 10. Avoid long, unsupported wire spans.
- 11. All analog sensors should be powered by the sensor power source from the PLUS+1 controller and ground returned to the sensor ground pin on the PLUS+1 controller.
- 12. Sensor lines should be twisted about one turn every 10 cm (4 in).
- 13. It is better to use wire harness anchors that will allow wires to float with respect to the machine rather than rigid anchors.

Recommended Machine Equipped with PLUS+1 Module Welding Procedures

The following procedures are recommended when welding on a machine equipped with PLUS+1 modules:

- The engine should be off.
- Disconnect the negative battery cable from the battery.
- Do not use electrical components to ground the welder. Clamp the ground cable for the welder to the component that will be welded as close a possible to the weld.

PLUS+1 USB/CAN Gateway

Communication (software uploads and downloads and service and diagnostic tool interaction) between PLUS+1 modules and a personal computer (PC) is accomplished using the vehicle's PLUS+1 CAN network.

The PLUS+1 CG150 USB/CAN gateway provides the communication interface between a PC USB port and the vehicle CAN bus. When connected to a PC, the gateway acts as a USB slave. In this configuration, all required electrical power is supplied by the upstream PC host. No other power source is required.

Refer to the PLUS+1 GUIDE Software User Manual 10100824 for gateway set-up information. Refer to the CG150 USB/CAN Gateway Data Sheet 520L0945 for electrical specifications and connector pin details.

SAUER
DANFOSSPLUS+1 Controller Family
Technical Information Notes

SAUER
DANFOSSPLUS+1 Controller Family
Technical Information Notes

Our Products

- Open circuit axial piston pumps
- Gear pumps and motors

Fan drive systems

Closed circuit axial piston pumps and motors

Bent axis motors

Hydrostatic transmissions

Transit mixer drives

Hydrostatic transaxles

Electrohydraulics

Integrated systems

Microcontrollers and software

PLUS+1[™] GUIDE

Displays

Joysticks and control handles

Sensors

Orbital motors

Inverters

Electrohydraulic power steering

Hydraulic power steering

Hydraulic integrated circuits (HIC)

Cartridge valves

Directional spool valves

Proportional valves

Sauer-Danfoss Mobile Power and Control Systems – Market Leaders Worldwide

Sauer-Danfoss is a comprehensive supplier providing complete systems to the global mobile market.

Sauer-Danfoss serves markets such as agriculture, construction, road building, material handling, municipal, forestry, turf care, and many others.

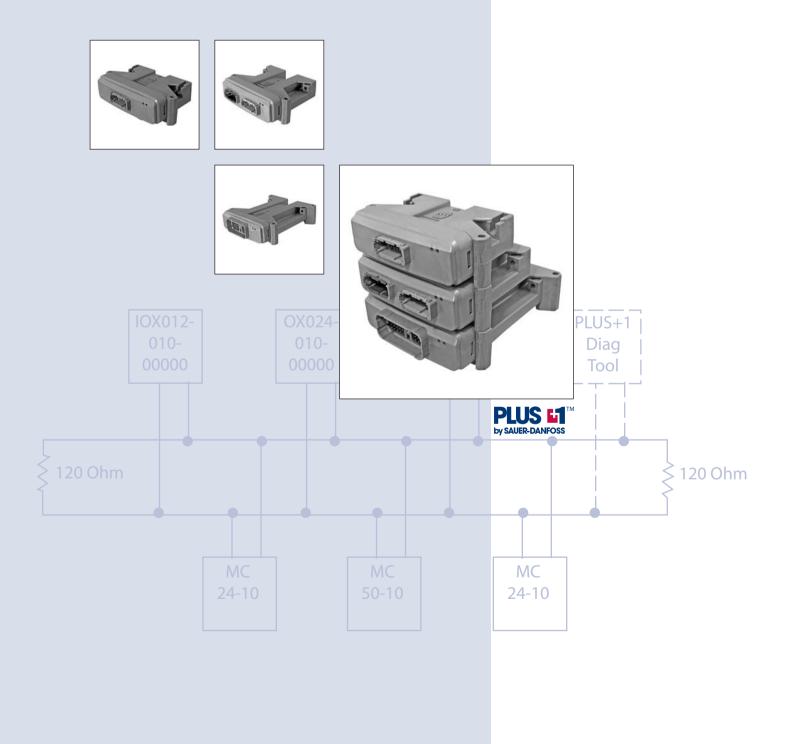
We offer our customers optimum solutions for their needs and develop new products and systems in close cooperation and partnership with them.

Sauer-Danfoss specializes in integrating a full range of system components to provide vehicle designers with the most advanced total system design.

Sauer-Danfoss provides comprehensive worldwide service for its products through an extensive network of Global Service Partners strategically located in all parts of the world.

Local address:

Sauer-Danfoss (US) Company 2800 East 13th Street Ames, IA 50010, USA Phone: +1 515 239-6000 Fax: +1 515 239 6618


Sauer-Danfoss GmbH & Co. OHG Postfach 2460, D-24531 Neumünster Krokamp 35, D-24539 Neumünster, Germany Phone: +49 4321 871-0 Fax: +49 4321 871 122 Sauer-Danfoss ApS DK-6430 Nordborg, Denmark Phone: +45 7488 4444 Fax: +45 7488 4400

Sauer-Danfoss-Daikin LTD Sannomiya Grand Bldg. 8F 2-2-21 Isogami-dori, Chuo-ku Kobe, Hyogo 651-0086, Japan Phone: +81 78 231 5001 Fax: +81 78 231 5004

PLUS+1 CAN I/O Module Communications

Technical Information

INTRODUCTION	About this manual	3
	Applicable documents	3
	References	
	Definitions and abbreviations	3
SYSTEM	System overview	4
	System overview System context	
	System design	7
DESIGN and	Decomposition description	
INTERACTION	Decomposition description CAN-identifier usage	
	Variable identifier usage define with CAN-shield	
	Predefined identifier usage with fixed N1	
	Fixed identifier usage	
	KWP2000 node and net assignments	
	KWP2000 node and net assignments KWP2000 node number	
	KWP2000 net number	
	LED handling	
	Red LED	
	Green LED	

Revision history

Revision	date	Page	Change	Remarks
12/16/20	05			Initial release

© 2005 Sauer-Danfoss. All rights reserved. Printed in U.S.A.

Sauer-Danfoss accepts no responsibility for possible errors in catalogs, brochures and other printed material. Sauer-Danfoss reserves the right to alter its products without prior notice. This also applies to products already ordered provided that such alterations aren't in conflict with agreed specifications. All trademarks in this material are properties of their respective owners. Sauer-Danfoss, the Sauer-Danfoss logotype, PLUS+1 and PLUS+1 logo are trademarks of the Sauer-Danfoss Group. Bosch is a registered trademark of Robert Bosch GmbH.

ABOUT THIS MANUAL	This publication explains the protocol design of the PLUS+1 CAN I/O communication. It
	will show the necessary parts of the design and their interaction.

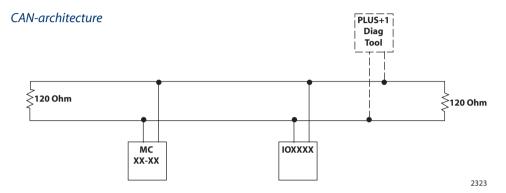
Applicable documents

DM SPRS1741 (i)		TMS320F2810 TMS320F2812 - Digital Signal Processors Data Technical Information
		(Texas Instruments)

References

SFS D-270405-1,1.14		Smart Flash loader Specification (Smart GmbH)			
DS301	DS301, 4.00	Application Layer and Communication Profile CiA (CAN in Automation)			
2.0 CAN2spec, 2.00		CAN Specification (Bosch [®])			
		Surface Vehicle Recommended Practice – J1939-21 (SAE)			

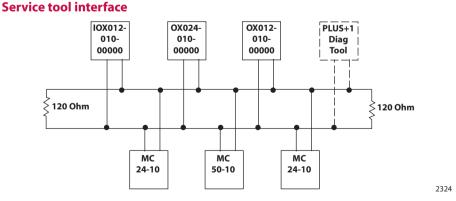
Definitions and abbreviations


Demition								
CAN	Controller Area Network							
CRC	Cyclic Redundancy Check							
CPU	Central Processing Unit							
ECU	Electronic Control Unit							
EEPROM	M Electrically Erasable and Programmable Read Only Memory*							
Kernel	Set of hardware dependant driver functions and operating system							
ОТР	One-Time Programmable							
RAM	Random Access Memory							
ROM	Read Only Memory							
LSB	Least Significant Byte							
MSB	Most Significant Byte							
PDO	Process Data Object (CAN Open Terminology) [DS301]							
Тх	Transmit							
Rx	Receive							
I/O	Input/Output							
МС	Master Controller in the network (for example: MC024-010 or MC050-010)							
0x	In front of a number defines a base 16 number (hexadecimal)							
CAN-Bx	CAN Data Byte number X, counting of these bytes start from zero							

* This phrase is still used, even if the selected device is re-programmable

SYSTEM OVERVIEW

Besides the programmable members of the microcontroller family like the MC024-010 and MC050-010, the PLUS+1 platform needs different I/O expander modules. There is always the chance that some additional requirements will need extra inputs or outputs to the system. If the controllers already in the system are out of I/O, it may make sense to add an inexpensive I/O module to the system rather than stepping up to a higher performance controller.


SYSTEM CONTEXT

PLUS+1 family with five different I/O units

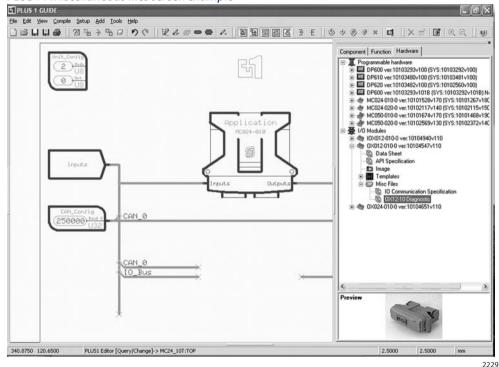
IX012-010-00000	12 pin input
IX024-010-00000	24 pin input
OX012-010-00000	12 pin output
OX024-010-00000	24 pin output
IOX012-10-00000	12 pin input/output

You can use more than one I/O device in the same network. It is also possible in Sauer-Danfoss only networks* to replace one unit without additional service actions.

CAN-bus with several PLUS+1 MC and I/O Modules

The I/O modules have a bootloader program. You can update the firmware using the PLUS+1 service and diagnostic tool. Use the downloader from the service tool to load a new .lhx file.

*Sauer-Danfoss only network means that only PLUS+1 compliant units are connected on the CAN-bus.



SYSTEM CONTEXT (CONTINUED)

Service tool interface (continued)

You can also use the service tool to change the default addressing mode of the I/O modules. This might be necessary in some circumstances. The service tool and the desired I/O module must be the only devices on the CAN-bus. You can also use the service tool to monitor the configuration and status of the outputs.

To use the service tool, you must first save the *diagnostic* (.*p1h*) file for the specific I/O module hardware that you are using. This file is available under the *misc files* in the *hardware tab* on the right side of the PLUS+1 GUIDE screen. Right click on the file and save it to your local hard drive.

PLUS+1 miscellaneous files screen example

Now that the file is saved to the local hard drive, open it with the service tool.

Remember that it is a .p1h file, not a .p1d file. (.p1h indicates that it is associated with a particular hardware, not an application.)

When you open the .p1h file you may get the following dialog box.

PLUS+1 GUIDE dialogue box example

This Diagnostic File is not design You have the option to select a r			OK
			Connect
Missing ECU:	Replace with: Filter: all	-	Cancel

2230

SYSTEM CONTEXT (CONTINUED)

Service tool interface (continued)

Simply click the drop down box on the right and select the actual hardware that is in your system. The reason for this is that the CAN-ID of the numeral 0 (zero) on the left doesn't match the CAN-IDs that are in your system. You need to tell it where the I/O module that you are selecting is located.

Next, you can click on the Parameter function for your I/O module in the *diagnostic* navigator. This will bring up a parameter list for the I/O module.

This parameter screen will allow you to view and change all of the configuration data for the I/O module.

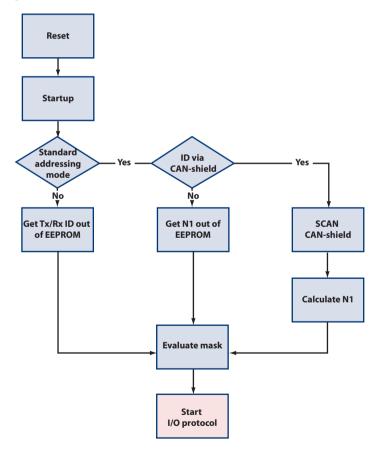
M 回 谷 LI 岱 石 M 橋 茎 玉 spostic Navigator	<u>ا د د </u> اوں ت		그 그 말 말 야 야 Download 🐨 Set Default 🗃 File Import	📙 File Expo	et	Generate	report		
New system	Paramet	ter list							
ECU list	Test.	- - -	d						_
	Downloa		Signal name	Verily value	4	Value	Default	Comment	
Grant Log functions Grant Parameter functions	Z	0,72	PwrUp8aud		Г		0	0	٦
UK12-10 Parameters	1	0,72	TX	0	Г		0	0	1
		0,72	RX	0	Г		0	0	-1
	7	0.72	AddiMode	0	Г		0	0	-1
	1	0,72	Frame	0	Г	-	0	0	-1
	1	0,72	N1	0	Г		0	0	-1
	5	0,72	MASK	0	Г		0	0	-1
	1	0,72	Net	0	Г	-	0	0	-1
		0,72	C1p06DutDefault	0	Г	-	0	0	-1
		0,72	C1p07OutDefault	0	Г	-	0	0	-1
		0,72	C1p080utDefault	0	Г		0	0	-1
	1	0.72	C1p090utDefault	0	Г		0	0	-1
	₹	0,72	C1p100utDefault	0	Г		0	0	-1
	1	0,72	C1p110utDefault	0	Г		0	0	-1
	1	0,72	C1p06ConfigDefault	0	Г	-	0	0	-1
		0,72	C1p07ConfigDefault	0	Г	_	0	0	-1
	7	0,72	C1p08ConfigDefault	0	Г		0	0	-1
	1	0,72	C1p09ConligDefault	0	Г		0	0	-1
	v	0.72	C1p10ConfigDefault	0	Г		0	0	-1
	1	0,72	C1p11ConfigDefault	0	Г		0	0	-1

PLUS+1 GUIDE parameter list screen example

Any change of the communication parameters requires a restart of the I/O device for the changes to take effect.

PLUS+1[™] CAN I/O Module Communications **SAUER** PLUS+1[™] CAN I/O Mo **DANFOSS** Technical Information **System**

SYSTEM DESIGN


CAN-ID

To minimize the number of CAN identifiers (CAN-ID) used, each I/O device uses just one CAN-ID to transmit data.

To run several devices on one network, each needs a different CAN-ID. After production all units start with the same standard default addressing mode. In the default addressing mode the devices scan the CAN-shield pin at startup and measure the voltage level at this pin. The CAN-ID is set based on this voltage. The default startup configuration is designed to create no conflicts with existing higher layer protocols in regards to the CAN-ID usage.

The addressing mode can be changed with the service tool to a set of default identifiers.

Default configuration flow chart

2325

DECOMPOSITION DESCRIPTION	The default startup configuration of I/O devices is designed to create as few conflicts as possible with existing higher layer protocols in regards to the CAN-ID usage. Due to the restricted CAN-ID range, the system will use the first data byte as a kind of sub-identifier.
	Non time-critical messages and configuration messages use a special sub-identifier (0xFF) to enter a new page of commands. In this page the second data byte works as a sub-command.
CAN-ID USAGE	The I/O device can provide up to three different ways of using the CAN-ID.

The I/O device can provide up to three different ways of using the CAN-ID.

Variable identifier usage define with CAN-shield

In the default configuration the system uses 11-bit identifiers according to CAN2.0 Part A. The usage of 11-bit identifiers means that the communication happens in the proprietary area of SAE J1939. To work in parallel on a CAN-open bus, the addressing scheme works on PDO (DS301).

The CAN-open default PDOs (CAN-IDs) are defined with a function code (bit 10...bit 7) and the node ID (bit 6...bit 0).

PDO CAN-ID

Most significant bit Least significant bit 10 9 8 7 6 5 4 3 2 1 0 Ρ Ρ Ρ Ρ Ν Ν Ν Ν Ν Ν Ν Ρ 4 bits – PDO Ν 7 bits - node ID

PDOs defined

PDO1 Tx 0x180+node ID
PDO1 Rx 0x200+node ID
PDO2 Tx 0x280+node ID
PDO2 Rx 0x300+node ID
PDO3 Tx 0x380+node ID
PDO3 Rx 0x400+node ID
PDO4 Tx 0x480+node ID
PDO4 Rx 0x500+node ID

CAN-open allows the node ID to range from 1 to 127.

The I/O devices will use PDO1 Tx to transmit and PDO2 Rx for receive. This avoids collision if someone in a proprietary system uses a node ID larger than 127.

PDO Node ID usage

The node ID consists of 7 bits. The node ID is divided into two sections

- a) to address the requirements of different devices on the same network
- b) so that one device is able to listen to more than one MC

CAN-IDENTIFIER USAGE (CONTINUED)

PDO CAN-ID with divided node-id

Least significant bit

10	9	8	7	6	5	4	3	2	1	0
Ρ	Ρ	Ρ	Ρ	N1	N1	N1	N1	NO	NO	NO

Bit definition

Most significant bit

[Р	4 bits - PDO					
	N1 4 bits - node ID defined by voltage						
[N0	3 bits - node ID defined for multi MC receive communication					

N0 definition

N0 is always set to zero for the PDO1 Tx message. N0 is also zero for the standard PDO2 Rx message, but it is possible to apply the mask value to receive all possible configurations for N0.

N0 usage in PDO

NO	Тх	Rx
0x00	Default, valid	Default, valid
0x01	Invalid	Only with masking
0x02	Invalid	Only with masking
0x03	Invalid	Only with masking
0x04	Invalid	Only with masking
0x05	Invalid	Only with masking
0x06	Invalid	Only with masking
0x07	Invalid	Only with masking

N1 definition

N1 is always assigned at start-up by scanning the analog/shield input. The input range is divided into 16 equal sections, each with a size of 300 mV, starting at 0 V. Any voltage higher than 4.5 Vdc will be interpreted as the highest input value.

N1 calculation

AD-Input low value	AD-Input high value	N1	N1	N1	Тх	Rx
(mV)	(mV)		(hex)	(hex pos)		
0	299	0	0x00	0	0x0180	0x0300
300	599	1	0x01	0x08	0x0188	0x0308
600	899	2	0x02	0x10	0x0190	0x0310
900	1199	3	0x03	0x18	0x0198	0x0318
1200	1499	4	0x04	0x20	0x01A0	0x0320
1500	1799	5	0x05	0x28	0x01A8	0x0328
1800	2099	6	0x06	0x30	0x01B0	0x0330
2100	2399	7	0x07	0x38	0x01B8	0x0338
2400	2699	8	0x08	0x40	0x01C0	0x0340
2700	2999	9	0x09	0x48	0x01C8	0x0348
3000	3299	10	0x0A	0x50	0x01D0	0x0350
3300	3599	11	0x0B	0x58	0x01D8	0x0358
3600	3899	12	0x0C	0x60	0x01E0	0x0360
3900	4199	13	0x0D	0x68	0x01E8	0x0368
4200	4499	14	0x0E	0x70	0x01F0	0x0370
4500	—	15	0x0F	0x78	0x01F8	0x0378

CAN-IDENTIFIER USAGE (CONTINUED)	Predefined identifier usage with fixed N1 In this configuration the N1 portion of the CAN identifier is predefined by Sauer-Dar It can be adjusted by the OEM with the PLUS+1 service and diagnostic tool.					. ,			
	configurable with	uration the diag	gnosti	ic to	ol. A	lso ir	n th	is c	ntifiers. These identifiers are onfiguration it is possible to apply select between 11 bit and 29 bit
KWP2000 NODE and NET ASSIGNMENTS	In addition to the I/O protocol the I/O devices also need to support the PLUS+1 service and diagnostic tool protocol. This is based on KeyWord Protocol 2000 (KWP2000.) Bas parameters for this are the <i>node</i> and <i>net</i> number. The following sections describe how these numbers are assigned. KWP2000 node number The node number is assigned by using N1 as the KWP2000 node number as shown below in variable identifier and predefined identifier addressing mode:				Yord Protocol 2000 (KWP2000.) Basic the following sections describe how VP2000 node number as shown				
	KWP2000 node number								
	Most significant bit						Least significant bit		
		7 6 X N1	5 N1	4 N1	3 N1	2 X	1 X	0 X	
	X Not used = 0						_		
	N1 4 bits - node ID defined by voltage or with fixed value								
	KWP2000 net number The <i>net number</i> is stored as a parameter in the non-volatile memory and can be mo with the PLUS+1 service and diagnostic tool.					volatile memory and can be modified			

LED HANDLING

To simplify system diagnostics the I/O device will use its LEDs, if available, to indicate different status conditions.

Red LED

The red LED indicates outgoing message traffic from the I/O device. The LED toggles its state with every successfully transmitted frame.

If the device's CAN-bus goes into a *bus off* condition then the LED will be permanently on.

Green LED

The green LED indicates that the I/O device is seeing incoming message traffic. The LED toggles its state with every successfully received frame. If no messages are received for more than 10 seconds, then the LED starts to blink at a one Hertz rate. Time critical messages and messages which have to be used all the time are implemented with a sub identifier which has a value from 0 to 0xFE.

SAUER
DANFOSSPLUS+1™ CAN I/O Module Communications
Technical Information Notes

SAUER DANFOSS

OUR PRODUCTS

Hydrostatic transmissions Hydraulic power steering

Electric power steering

Electrohydraulic power steering

Closed and open circuit axial piston pumps and motors

Gear pumps and motors

Bent axis motors

Orbital motors

Transit mixer drives

Planetary compact gears

Proportional valves

Directional spool valves

Cartridge valves

Hydraulic integrated circuits

Hydrostatic transaxles

Integrated systems

Fan drive systems

Electrohydraulics

Microcontrollers and software

Electric motors and inverters

Joysticks and control handles

Displays

Sensors

Sauer-Danfoss Mobile Power and Control Systems – Market Leaders Worldwide

Sauer-Danfoss is a comprehensive supplier providing complete systems to the global mobile market.

Sauer-Danfoss serves markets such as agriculture, construction, road building, material handling, municipal, forestry, turf care, and many others.

We offer our customers optimum solutions for their needs and develop new products and systems in close cooperation and partnership with them.

Sauer-Danfoss specializes in integrating a full range of system components to provide vehicle designers with the most advanced total system design.

Sauer-Danfoss provides comprehensive worldwide service for its products through an extensive network of Global Service Partners strategically located in all parts of the world.

Sauer-Danfoss (US) Company 2800 East 13th Street Ames, IA 50010, USA Phone: +1 515 239-6000, Fax: +1 515 239 6618

Sauer-Danfoss (Neumünster) GmbH & Co. OHG Postfach 2460, D-24531 Neumünster Krokamp 35, D-24539 Neumünster, Germany Phone: +49 4321 871-0, Fax: +49 4321 871 122

Sauer-Danfoss (Nordborg) ApS DK-6430 Nordborg, Denmark Phone: +45 7488 4444, Fax: +45 7488 4400

www.sauer-danfoss.com