

3

snhy.com/FSBD

Flow dividers are sliding-spool, pressure-compensated devices used to split oil flow to two different branches of a circuit in a designated ratio. These valves are suitable for applications that use the following: unidirectional hydraulic motors, hydraulic cylinders where flow division in one direction only is required, and multiple circuits that are serviced from one pump supply.

TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

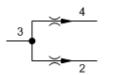
Cavity	T-31A	
Series	1	
Capacity	2,5 - 12 L/min.	
Maximum Operating Pressure	350 bar	
Divisional Accuracy at Minimum Input Flow	±4.5%	
Divisional Accuracy at Max Input Flow	±2.5%	
Pressure Drop at Minimum Rated Input Flow	2 bar	
Pressure Drop at Maximum Rated Input Flow	18 bar	
Rated Input Flow with 50/50 Split	2,5 - 12 L/min.	
Rated Input Flow with 40/60 Split	2,8 - 9,5 L/min.	
Rated Input Flow with 33/67 Split	1,7 - 8,5 L/min.	
Valve Hex Size	22,2 mm	
Valve Installation Torque	41 - 47 Nm	
Seal kit - Cartridge	Buna: 990031007	
Seal kit - Cartridge	Polyurethane: 990031002	
Seal kit - Cartridge	Viton: 990031006	
Model Weight	0.15 kg.	

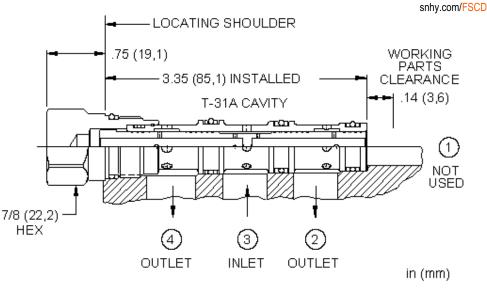
CONFIGURATION OPTIONS

Model Code Example: FSBDXAN

CONTROL	(X)	FLOW SPLIT	(A)	SEAL MATERIAL (N)	MATERIAL/COATING
X Not Adjustable		A 50/50		N Buna-N	Standard Material/Coating
		B 40/60		V Viton	/AP Stainless Steel, Passivated
		C 33/67			

- All flow divider and divider/combiner cartridges are physically interchangeable (i.e. same flow path, same cavity for a given frame size).
- Operating characteristics cause the leg of the circuit with the greatest load to receive the higher percentage of flow in dividing mode. If a rigid mechanism is used to
 tie actuators together, the lead actuator may pull the lagging actuator and cause it to cavitate.
- In applications involving rigid mechanisms between multiple actuators, operating inaccuracy will cause the eventual lock-up of the system. If the mechanical
 structure is not designed to allow for the operating inaccuracy inherent in the valve, damage may occur.
- In motor circuits, rigid frames or mechanisms that tie motors together, and/or complete mechanical synchronized motion of the output shaft of the motors, either by
 wheels to the pavement or sprockets to conveyors, will contribute to cavitation, lock-up and/or pressure intensification.
- Variations in speed and lock-up can be attributed to differences in motor displacement, motor leakage, wheel diameter variance and friction of wheels on the driving surface.
- This valve is a divider only; any attempt to flow backwards through the valve is not advised.
- Dividers with unequal ratios have the higher flow at port 4.
- Below the minimum flow rating there is not enough flow for the valve to modulate. It is effectively a tee. If flow starts at zero and rises, there will be no dividing control until the flow reaches the minimum rating.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge
 machining variations.


Split Input Flow		out Flow	Rated	Maximum Possible Flow Variations	
			Accuracy	High Flow Leg	Low Flow Leg
	Max	3 gpm	±2.5%	1.42 - 1.58 gpm	
50:50	Rated	11 L/min	12.570	5,2 - 5,8 L/min	
30.30	Min	.6 gpm	±4.5%	.2733 gpm	
	rated	2,5 L/min	±4.570	1,1 - 1,4 L/min	
	Max	2.5 gpm	±2.5%	1.44 - 1.56 gpm	.94 - 1.06 gpm
40:60	Rated	9,5 L/min	1 12.5 %	5,4 - 5,9 L/min	3,6 - 4,0 L/min
40.00	Min	.5 gpm	±4.5%	.2832 gpm	.1822 gpm
	rated	2,8 L/min	14.370	1,6 - 1,8 L/min	1,0 - 1,2 L/min
	Max	2.2 gpm	±2.5%	1.42 - 1.53 gpm	.6778 gpm
33:67	Rated	8,5 L/min	12.570	5,5 - 5,9 L/min	2,6 - 3,0 L/min
55.07	Min	.45 gpm	±4.5%	.2832 gpm	.1317 gpm
	rated	1,7 L/min	14.070	1,06 - 1,22 L/min	0,48 - 0,64 L/min


PERFORMANCE CURVES

The maximum variation is at 5000 psi (350 bar) differential between legs with the high pressure leg being the higher flow.

Flow dividers are sliding-spool, pressure-compensated devices used to split oil flow to two different branches of a circuit in a designated ratio. These valves are suitable for applications that use the following: unidirectional hydraulic motors, hydraulic cylinders where flow division in one direction only is required, and multiple circuits that are serviced from one pump supply.

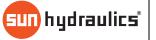
TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-31A	
Series	1	
Capacity	6 - 30 L/min.	
Maximum Operating Pressure	350 bar	
Divisional Accuracy at Minimum Input Flow	±6.5%	
Divisional Accuracy at Max Input Flow	±3.5%	
Pressure Drop at Minimum Rated Input Flow	2 bar	
Pressure Drop at Maximum Rated Input Flow	18 bar	
Rated Input Flow with 50/50 Split	6 - 30 L/min.	
Rated Input Flow with 40/60 Split	5,3 - 26,5 L/min.	
Rated Input Flow with 33/67 Split	4,5 - 22,7 L/min.	
Valve Hex Size	22,2 mm	
Valve Installation Torque	41 - 47 Nm	
Seal kit - Cartridge	Buna: 990031007	
Seal kit - Cartridge	Polyurethane: 990031002	
Seal kit - Cartridge	Viton: 990031006	
Model Weight	0.15 kg.	

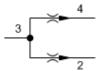
CONFIGURATION OPTIONS

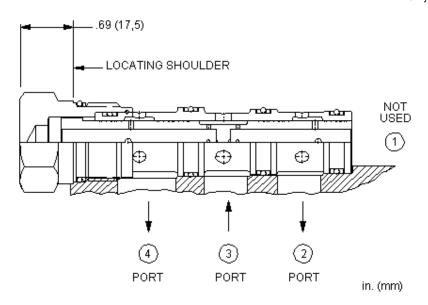
Model Code Example: FSCDXAN


CONTROL	(X)	FLOW SPLIT	(A)	SEAL MATERIAL	(N)	MATERIAL/COATING
X Not Adjustable		A 50/50		N Buna-N		Standard Material/Coating
		B 40/60		V Viton		/AP Stainless Steel, Passivated
		C 33/67				/LH Mild Steel, Zinc-Nickel

- All flow divider and divider/combiner cartridges are physically interchangeable (i.e. same flow path, same cavity for a given frame size).
- Operating characteristics cause the leg of the circuit with the greatest load to receive the higher percentage of flow in dividing mode. If a rigid mechanism is used to
 tie actuators together, the lead actuator may pull the lagging actuator and cause it to cavitate.
- In applications involving rigid mechanisms between multiple actuators, operating inaccuracy will cause the eventual lock-up of the system. If the mechanical
 structure is not designed to allow for the operating inaccuracy inherent in the valve, damage may occur.
- In motor circuits, rigid frames or mechanisms that tie motors together, and/or complete mechanical synchronized motion of the output shaft of the motors, either by
 wheels to the pavement or sprockets to conveyors, will contribute to cavitation, lock-up and/or pressure intensification.
- Variations in speed and lock-up can be attributed to differences in motor displacement, motor leakage, wheel diameter variance and friction of wheels on the driving surface.
- This valve is a divider only; any attempt to flow backwards through the valve is not advised.
- Dividers with unequal ratios have the higher flow at port 4.
- Below the minimum flow rating there is not enough flow for the valve to modulate. It is effectively a tee. If flow starts at zero and rises, there will be no dividing control until the flow reaches the minimum rating.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge
 machining variations.

Split Input Flow		out Flow	Rated		
-			Accuracy	High Flow Leg	Low Flow Leg
	Max	8 gpm	±3.5%	3.72 - 4.28 gpm	
50:50	Rated	30 L/min	±3.570	14,1 - 15,9 L/min	
50.50	Min	1.5 gpm	±6.5%	.6585 gpm	
	rated	6 L/min	±0.570	2,5 - 3,5 L/min	
	Max	7 gpm	±3.5%	4.0 - 4.4 gpm	2.6 - 3.0 gpm
40:60	Rated	26,5 L/min	10.070	15,0 - 16,8 L/min	9,7 - 11,6 L/min
40.00	Min	1.4 gpm	±6.5%	.8187 gpm	.5359 gpm
	rated	5,3 /min	10.570	2,8 - 3,5 L/min	1,8 - 2,5 L/min
	Max	6 gpm	±3.5%	3.8 - 4.2 gpm	1.8 - 2.2 gpm
33:67	Rated	22,7 L/min	±J.570	14,4 - 16 L/min	6,7 - 8,3 L/min
33.07	Min	1.2 gpm	±6.5%	.7288 gpm	.3250 gpm
	rated	4,5 L/min	ш.576	2,7 - 3,3 L/min	1,2 - 1,8 L/min


PERFORMANCE CURVES


The maximum variation is at 5000 psi (350 bar) differential between legs with the high pressure leg being the higher flow.

snhy.com/FSDC

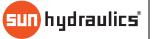
Flow dividers are sliding-spool, pressure-compensated devices used to split oil flow to two different branches of a circuit in a designated ratio. These valves are suitable for applications that use the following: unidirectional hydraulic motors, hydraulic cylinders where flow division in one direction only is required, and multiple circuits that are serviced from one pump supply.

TECHNICAL DATA

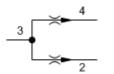
NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

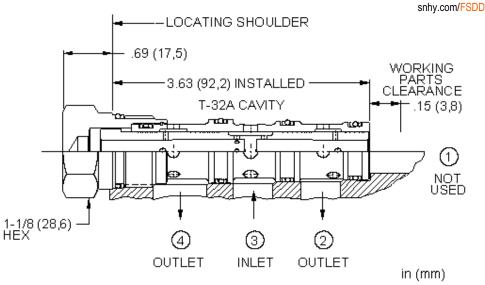
Cavity	T-32A	
Series	2	
Capacity	6 - 30 L/min.	
Pressure Drop at Minimum Rated Input Flow	2 bar	
Pressure Drop at Maximum Rated Input Flow	18 bar	
Valve Hex Size	28,6 mm	
Valve Installation Torque	61 - 68 Nm	
Seal kit - Cartridge	Buna: 990032007	
Seal kit - Cartridge	Polyurethane: 990032002	
Seal kit - Cartridge	Viton: 990032006	
Model Weight	0.26 kg.	

CONFIGURATION OPTIONS Model Code Example: FSDCXAN CONTROL (X) FLOW SPLIT (A) SEAL MATERIAL (N) MATERIAL/COATING


X Not Adjustable	A 50/50	N Buna-N	Standard Material/Coating
		V Viton	/AP Stainless Steel, Passivated

- All flow divider and divider/combiner cartridges are physically interchangeable (i.e. same flow path, same cavity for a given frame size).
- Operating characteristics cause the leg of the circuit with the greatest load to receive the higher percentage of flow in dividing mode. If a rigid mechanism is used to tie actuators together, the lead actuator may pull the lagging actuator and cause it to cavitate.
- In applications involving rigid mechanisms between multiple actuators, operating inaccuracy will cause the eventual lock-up of the system. If the mechanical
 structure is not designed to allow for the operating inaccuracy inherent in the valve, damage may occur.
- In motor circuits, rigid frames or mechanisms that tie motors together, and/or complete mechanical synchronized motion of the output shaft of the motors, either by
 wheels to the pavement or sprockets to conveyors, will contribute to cavitation, lock-up and/or pressure intensification.
- Variations in speed and lock-up can be attributed to differences in motor displacement, motor leakage, wheel diameter variance and friction of wheels on the driving surface.
- This valve is a divider only; any attempt to flow backwards through the valve is not advised.
- Below the minimum flow rating there is not enough flow for the valve to modulate. It is effectively a tee. If flow starts at zero and rises, there will be no dividing
 control until the flow reaches the minimum rating.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge
 machining variations.


PERFORMANCE CURVES


Split	Input Flow		Rated Accuracy	Maximum Possible Flow Variation
	Max	8 gpm	±2%	3.84 - 4.16 gpm
50:50	Rated	30 L/min	12 /0	14,4 - 15,6 L/min
50.50	Min rated	1.5 gpm	±3%	.7080 gpm
	win rateo	6,0 L/min	±3%	2,8 - 3,2 L/min

The maximum possible variation is at 5000 psi (350 bar) differential between legs with the high pressure leg being the higher flow.

Flow dividers are sliding-spool, pressure-compensated devices used to split oil flow to two different branches of a circuit in a designated ratio. These valves are suitable for applications that use the following: unidirectional hydraulic motors, hydraulic cylinders where flow division in one direction only is required, and multiple circuits that are serviced from one pump supply.

TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-32A	
Series	2	
Capacity	12 - 60 L/min.	
Maximum Operating Pressure	350 bar	
Divisional Accuracy at Minimum Input Flow	±6.5%	
Divisional Accuracy at Max Input Flow	±3.5%	
Pressure Drop at Minimum Rated Input Flow	2 bar	
Pressure Drop at Maximum Rated Input Flow	18 bar	
Rated Input Flow with 50/50 Split	12 - 60 L/min.	
Rated Input Flow with 40/60 Split	9,4 - 47 L/min.	
Rated Input Flow with 33/67 Split	8,4 - 42 L/min.	
Valve Hex Size	28,6 mm	
Valve Installation Torque	61 - 68 Nm	
Seal kit - Cartridge	Buna: 990032007	
Seal kit - Cartridge	Polyurethane: 990032002	
Seal kit - Cartridge	Viton: 990032006	
Model Weight	0.26 kg.	

CONFIGURATION OPTIONS

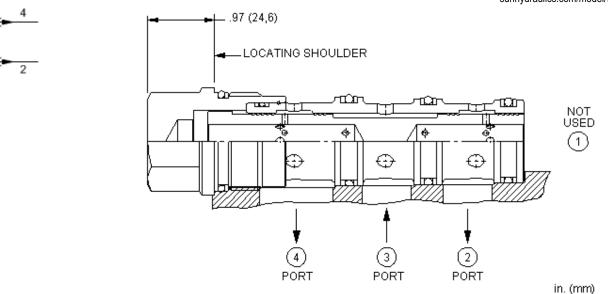
Model Code Example: FSDDXAN

CONTROL	(X) FLOW SPLIT	(A) SEAL MATERIAL	(N)
X Not Adjustable	A 50/50	N Buna-N	
	B 40/60	V Viton	
	C 33/67		

- All flow divider and divider/combiner cartridges are physically interchangeable (i.e. same flow path, same cavity for a given frame size).
- Operating characteristics cause the leg of the circuit with the greatest load to receive the higher percentage of flow in dividing mode. If a rigid mechanism is used to
 tie actuators together, the lead actuator may pull the lagging actuator and cause it to cavitate.
- In applications involving rigid mechanisms between multiple actuators, operating inaccuracy will cause the eventual lock-up of the system. If the mechanical
 structure is not designed to allow for the operating inaccuracy inherent in the valve, damage may occur.
- In motor circuits, rigid frames or mechanisms that tie motors together, and/or complete mechanical synchronized motion of the output shaft of the motors, either by
 wheels to the pavement or sprockets to conveyors, will contribute to cavitation, lock-up and/or pressure intensification.
- Variations in speed and lock-up can be attributed to differences in motor displacement, motor leakage, wheel diameter variance and friction of wheels on the driving surface.
- This valve is a divider only; any attempt to flow backwards through the valve is not advised.
- Dividers with unequal ratios have the higher flow at port 4.
- Below the minimum flow rating there is not enough flow for the valve to modulate. It is effectively a tee. If flow starts at zero and rises, there will be no dividing control until the flow reaches the minimum rating.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge
 machining variations.

Split	Inj	out Flow	Rated	Maximum Possible Flow Variations	
			Accuracy	High Flow Leg	Low Flow Leg
	Max	15 gpm	±3.5%	6.98 - 8.02 gpm	
50:50	Rated	60 L/min	10.070	28 - 32 L/min	
30.30	Min	3 gpm	±6.5%	1.30 - 1.70 gpm	
	rated	12 L/min	±0.570	5,2 - 6,7 L/min	
	Max	12.5 gpm	±3.5%	7.1 - 7.9 gpm	4.6 - 5.4 gpm
40:60	Rated	47 L/min	±J.570	26,6 - 29,8 L/min	17,2 - 20,4 L/min
40.00	Min	2.5 gpm	+6.5%	1.34 - 1.66 gpm	.84 - 1.16 gpm
	rated	9,4 L/min	±0.070	5,0 - 6,2 L/min	3,2 - 4,4 L/min
	Max	11 gpm	±3.5%	7.0 - 7.8 gpm	3.2 - 4.0 gpm
33:67	Rated	42 L/min	±J.570	26,5 - 29,5 L/min	12,5 - 15,5 L/min
33.07	Min 2.2 gpm rated 8,4 L/min	46.5%	1.3 - 1.6 gpm	.69 gpm	
		8,4 L/min	±6.5%	5,1 - 6,2 L/min	2,2 - 3,3 L/min

PERFORMANCE CURVES


The maximum variation is at 5000 psi (350 bar) differential between legs with the high pressure leg being the higher flow.

3

sunhydraulics.com/model/FSEC

Flow dividers are sliding-spool, pressure-compensated devices used to split oil flow to two different branches of a circuit in a designated ratio. These valves are suitable for applications that use the following: unidirectional hydraulic motors, hydraulic cylinders where flow division in one direction only is required, and multiple circuits that are serviced from one pump supply.

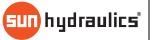
TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-33A
Series	3
Capacity	12 - 60 L/min.
Pressure Drop at Minimum Rated Input Flow	2 bar
Pressure Drop at Maximum Rated Input Flow	18 bar
Valve Hex Size	31,8 mm
Valve Installation Torque	203 - 217 Nm
Seal kit - Cartridge	Buna: 990033007
Seal kit - Cartridge	Polyurethane: 990033002
Seal kit - Cartridge	Viton: 990033006
Model Weight	0.61 kg.

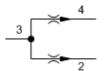
CONFIGURATION OPTIONS

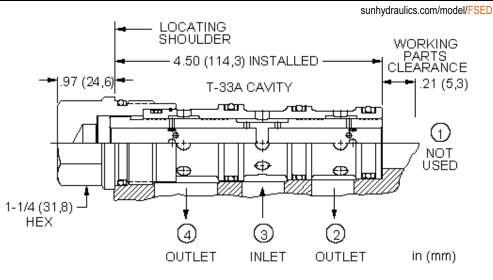
Model Code Example: FSECXAN


CONTROL	(X) FLOW SPLIT	(A) SEAL MATERIAL	(N) MATERIAL/COATING	
X Not Adjustable	A 50/50	N Buna-N	Standard Material/Coating	
		V Viton	/AP Stainless Steel, Passivate	d

- All flow divider and divider/combiner cartridges are physically interchangeable (i.e. same flow path, same cavity for a given frame size).
- Operating characteristics cause the leg of the circuit with the greatest load to receive the higher percentage of flow in dividing mode. If a rigid mechanism is used to tie actuators together, the lead actuator may pull the lagging actuator and cause it to cavitate.
- In applications involving rigid mechanisms between multiple actuators, operating inaccuracy will cause the eventual lock-up of the system. If the mechanical structure is not designed to allow for the operating inaccuracy inherent in the valve, damage may occur.
- In motor circuits, rigid frames or mechanisms that tie motors together, and/or complete mechanical synchronized motion of the output shaft of the motors, either by
 wheels to the pavement or sprockets to conveyors, will contribute to cavitation, lock-up and/or pressure intensification.
- Variations in speed and lock-up can be attributed to differences in motor displacement, motor leakage, wheel diameter variance and friction of wheels on the driving surface.
- This valve is a divider only; any attempt to flow backwards through the valve is not advised.
- Below the minimum flow rating there is not enough flow for the valve to modulate. It is effectively a tee. If flow starts at zero and rises, there will be no dividing control until the flow reaches the minimum rating.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge
 machining variations.

Split	Input	Flow	Rated Accuracy	Maximum Possible Flow Variation
	Max	15 gpm	+2%	7.2 - 7.8 gpm
50:50	Rated	60 L/min	1270	28,8 - 31,2 L/min
30.30	Min rated	3 gpm	±3%	1.41 - 1.59 gpm
	IVIIII rateo	12 L/min	1 ±3%	5,6 - 6,4 L/min


PERFORMANCE CURVES


The maximum possible variation is at 5000 psi (350 bar) differential between legs with the high pressure leg being the higher flow.

MODEL

Flow dividers are sliding-spool, pressure-compensated devices used to split oil flow to two different branches of a circuit in a designated ratio. These valves are suitable for applications that use the following: unidirectional hydraulic motors, hydraulic cylinders where flow division in one direction only is required, and multiple circuits that are serviced from one pump supply.

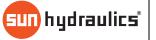
TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-33A
Series	3
Capacity	23 - 120 L/min.
Maximum Operating Pressure	350 bar
Divisional Accuracy at Minimum Input Flow	±6.5%
Divisional Accuracy at Max Input Flow	±3.5%
Pressure Drop at Minimum Rated Input Flow	2 bar
Pressure Drop at Maximum Rated Input Flow	18 bar
Rated Input Flow with 50/50 Split	23 - 120 L/min.
Rated Input Flow with 40/60 Split	19 - 95 L/min.
Rated Input Flow with 33/67 Split	17 - 85 L/min.
Valve Hex Size	31,8 mm
Valve Installation Torque	203 - 217 Nm
Seal kit - Cartridge	Buna: 990033007
Seal kit - Cartridge	Polyurethane: 990033002
Seal kit - Cartridge	Viton: 990033006
Model Weight	0.61 kg.

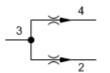
CONFIGURATION OPTIONS

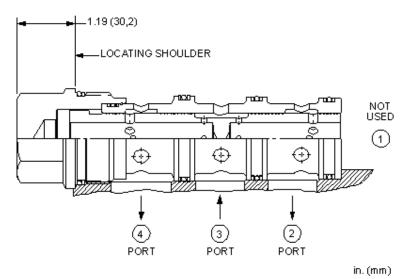
Model Code Example: FSEDXAN


CONTROL	(X) FLOW SPLIT	(A) SEAL MATERIAL	(N)	MATERIAL/COATING
X Not Adjustable	A 50/50	N Buna-N		Standard Material/Coating
	B 40/60	E EPDM		/AP Stainless Steel, Passivated
	C 33/67	V Viton		

- All flow divider and divider/combiner cartridges are physically interchangeable (i.e. same flow path, same cavity for a given frame size).
- Operating characteristics cause the leg of the circuit with the greatest load to receive the higher percentage of flow in dividing mode. If a rigid mechanism is used to
 tie actuators together, the lead actuator may pull the lagging actuator and cause it to cavitate.
- In applications involving rigid mechanisms between multiple actuators, operating inaccuracy will cause the eventual lock-up of the system. If the mechanical
 structure is not designed to allow for the operating inaccuracy inherent in the valve, damage may occur.
- In motor circuits, rigid frames or mechanisms that tie motors together, and/or complete mechanical synchronized motion of the output shaft of the motors, either by
 wheels to the pavement or sprockets to conveyors, will contribute to cavitation, lock-up and/or pressure intensification.
- Variations in speed and lock-up can be attributed to differences in motor displacement, motor leakage, wheel diameter variance and friction of wheels on the driving surface.
- This valve is a divider only; any attempt to flow backwards through the valve is not advised.
- Dividers with unequal ratios have the higher flow at port 4.
- Below the minimum flow rating there is not enough flow for the valve to modulate. It is effectively a tee. If flow starts at zero and rises, there will be no dividing control until the flow reaches the minimum rating.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge
 machining variations.

Split	Inj	out Flow	Rated Maximum Possible Flow Variatio	le Flow Variations	
_			Accuracy	High Flow Leg	Low Flow Leg
	Max	30 gpm	±3.5%	14 - 16 gpm	
50:50	Rated	120 L/min	1.570	56 - 64 L/min	
30.30	Min	6 gpm	±6.5%	2.6 - 3.4 gpm	
	rated	23 L/min	1 20.0 %	10 - 13 L/min	
	Max	25 gpm	±3.5%	14.1 - 15.9 gpm	9.1 - 10.9 gpm
40:60	Rated	95 L/min	1 ±0.0 %	54 - 60 L/min	35 - 41 L/min
40.00	Min	5 gpm	±6.5%	2.7 - 3.3 gpm	1.7 - 2.3 gpm
	rated	19 L/min	10.570	10.2 - 12.6 L/min	6,4 - 8,8 L/min
	Max	22 gpm	±3.5%	14.0 - 15.5 gpm	6.5 - 8.0 gpm
33:67	Rated	85 L/min	±3.5%	54 - 60 L/min	25 - 31 L/min
33.07	Min	4.4 gpm	±6.5%	2.7 - 3.3 gpm	1.1 - 1.7 gpm
	rated	17 L/min	ш. <u>э</u> м	10,3 - 12,5 L/min	4,5 - 6,7 L/min


PERFORMANCE CURVES


The maximum variation is at 5000 psi (350 bar) differential between legs with the high pressure leg being the higher flow.

snhy.com/FSFC

Flow dividers are sliding-spool, pressure-compensated devices used to split oil flow to two different branches of a circuit in a designated ratio. These valves are suitable for applications that use the following: unidirectional hydraulic motors, hydraulic cylinders where flow division in one direction only is required, and multiple circuits that are serviced from one pump supply.

TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-34A
Series	4
Capacity	23 - 120 L/min.
Pressure Drop at Minimum Rated Input Flow	2 bar
Pressure Drop at Maximum Rated Input Flow	18 bar
Valve Hex Size	41,3 mm
Valve Installation Torque	474 - 508 Nm
Seal kit - Cartridge	Buna: 990034007
Seal kit - Cartridge	Polyurethane: 990034002
Seal kit - Cartridge	Viton: 990034006
Model Weight	1.28 kg.

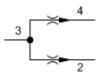
CONFIGURATION OPTIONS

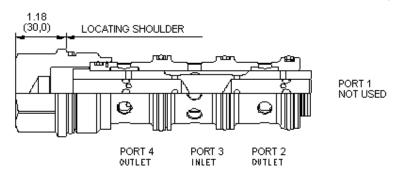
Model Code Example: FSFCXAN



- All flow divider and divider/combiner cartridges are physically interchangeable (i.e. same flow path, same cavity for a given frame size).
- Operating characteristics cause the leg of the circuit with the greatest load to receive the higher percentage of flow in dividing mode. If a rigid mechanism is used to tie actuators together, the lead actuator may pull the lagging actuator and cause it to cavitate.
- In applications involving rigid mechanisms between multiple actuators, operating inaccuracy will cause the eventual lock-up of the system. If the mechanical
 structure is not designed to allow for the operating inaccuracy inherent in the valve, damage may occur.
- In motor circuits, rigid frames or mechanisms that tie motors together, and/or complete mechanical synchronized motion of the output shaft of the motors, either by
 wheels to the pavement or sprockets to conveyors, will contribute to cavitation, lock-up and/or pressure intensification.
- Variations in speed and lock-up can be attributed to differences in motor displacement, motor leakage, wheel diameter variance and friction of wheels on the driving surface.
- This valve is a divider only; any attempt to flow backwards through the valve is not advised.
- Below the minimum flow rating there is not enough flow for the valve to modulate. It is effectively a tee. If flow starts at zero and rises, there will be no dividing control until the flow reaches the minimum rating.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge
 machining variations.

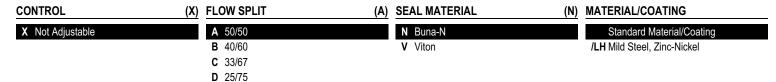
Split	Input	Flow	Rated Accuracy	Maximum Possible Flow Variation
	Max	30 gpm	+2.0%	14.4 - 15.6 gpm
50:50	Rated	120 L/min	12.070	57,6 - 62,4 L/min
JU.JU	Min rated	6 gpm	±3.0%	2.8 - 3.2 gpm
		24 L/min	10.0%	11,3 - 12,7 L/min


PERFORMANCE CURVES


The maximum possible variation is at 5000 psi (350 bar) differential between legs with the high pressure leg being the higher flow.

snhy.com/FSFD

Flow dividers are sliding-spool, pressure-compensated devices used to split oil flow to two different branches of a circuit in a designated ratio. These valves are suitable for applications that use the following: unidirectional hydraulic motors, hydraulic cylinders where flow division in one direction only is required, and multiple circuits that are serviced from one pump supply.

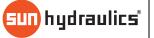

TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-34A
Series	4
Capacity	45 - 240 L/min.
Maximum Operating Pressure	350 bar
Divisional Accuracy at Minimum Input Flow	±6.5%
Divisional Accuracy at Max Input Flow	±3.5%
Pressure Drop at Minimum Rated Input Flow	2 bar
Pressure Drop at Maximum Rated Input Flow	18 bar
Rated Input Flow with 50/50 Split	45 - 240 L/min.
Rated Input Flow with 40/60 Split	38 - 200 L/min.
Rated Input Flow with 33/67 Split	36 - 180 L/min.
Valve Hex Size	41,3 mm
Valve Installation Torque	474 - 508 Nm
Seal kit - Cartridge	Buna: 990034007
Seal kit - Cartridge	Polyurethane: 990034002
Seal kit - Cartridge	Viton: 990034006
Model Weight	1.27 kg.

CONFIGURATION OPTIONS

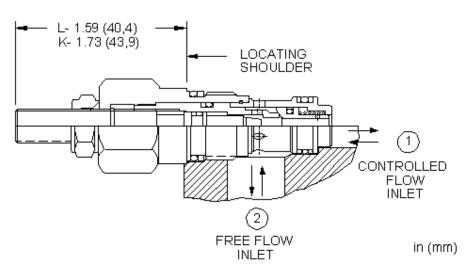
Model Code Example: FSFDXAN



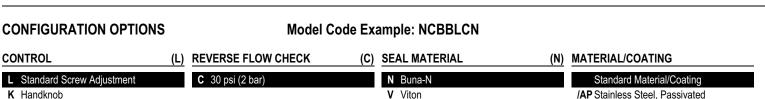
- All flow divider and divider/combiner cartridges are physically interchangeable (i.e. same flow path, same cavity for a given frame size).
- Operating characteristics cause the leg of the circuit with the greatest load to receive the higher percentage of flow in dividing mode. If a rigid mechanism is used to
 tie actuators together, the lead actuator may pull the lagging actuator and cause it to cavitate.
- In applications involving rigid mechanisms between multiple actuators, operating inaccuracy will cause the eventual lock-up of the system. If the mechanical
 structure is not designed to allow for the operating inaccuracy inherent in the valve, damage may occur.
- In motor circuits, rigid frames or mechanisms that tie motors together, and/or complete mechanical synchronized motion of the output shaft of the motors, either by
 wheels to the pavement or sprockets to conveyors, will contribute to cavitation, lock-up and/or pressure intensification.
- Variations in speed and lock-up can be attributed to differences in motor displacement, motor leakage, wheel diameter variance and friction of wheels on the driving surface.
- This valve is a divider only; any attempt to flow backwards through the valve is not advised.
- Dividers with unequal ratios have the higher flow at port 4.
- Below the minimum flow rating there is not enough flow for the valve to modulate. It is effectively a tee. If flow starts at zero and rises, there will be no dividing control until the flow reaches the minimum rating.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge
 machining variations.

Split	Input Flow		Rated		le Flow Variations
			Accuracy	High Flow Leg	Low Flow Leg
	Max	60 gpm	±3.5%	28 - 32 gpm	
50:50	Rated	240 L/min	10.070	112 - 128 L/min	
30.30	Min	12 gpm	±6.5%	5.2 - 6.8 gpm	
	rated	45 L/min	10.5%	19,6- 25,4 L/min	
	Max	50 gpm	±3.5%	28 - 32 gpm	18 - 22 gpm
40:60	Rated	200 L/min	1.5%	113 - 127 L/min	73 - 87 L/min
40.00	Min	10 gpm	±6.5%	5.4 - 6.6 gpm	3.4 - 4.6 gpm
	rated	38 L/min	10.5%	20,3 - 25,3 L/min	12,7 - 17,7 L/min
	Max	45 gpm	±3.5%	28 - 32 gpm	13 - 17 gpm
33:67	Rated	180 L/min	10.5%	114 - 126 L/min	54 - 66 L/min
33.07	Min	9 gpm	pm ±6.5%	5.4 - 6.6 gpm	2.4 - 3.6 gpm
	rated	36 L/min	LU.376	22 - 26 L/min	10 - 14 L/min

PERFORMANCE CURVES


The maximum variation is at 5000 psi (350 bar) differential between legs with the high pressure leg being the higher flow.

sunhydraulics.com/model/NCBB

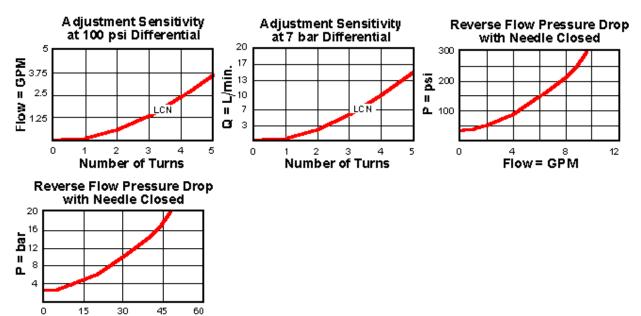


Needle valves with reverse-flow check are fully adjustable orifices used to regulate flow. They are infinitely adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity check valve provides unrestricted flow from port 2 to port 1. They are not pressure compensated.

TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-162A
Series	0
Capacity	20 L/min. (4 mm)
Maximum Operating Pressure	350 bar
Maximum Valve Leakage at 110 SUS (24 cSt)	0,7 cc/min.
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	5
Valve Hex Size	19,1 mm
Valve Installation Torque	27 - 33 Nm
Adjustment Screw Internal Hex Size	4 mm
Locknut Hex Size	15 mm
Locknut Torque	9 - 10 Nm
Seal kit - Cartridge	Buna: 990162007
Seal kit - Cartridge	Polyurethane: 990162002
Seal kit - Cartridge	Viton: 990162006
Model Weight	0.08 kg.

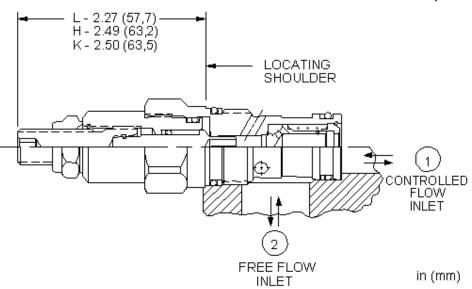



/AP Stainless Steel, Passivated /LH Mild Steel, Zinc-Nickel

- All 2-port flow control cartridges are physically and functionally interchangeable (i.e. same flow path, same cavity for a given frame size). However, cartridge
 extension dimensions from the mounting surface may vary.
- Because needle valves are non-compensating devices, the fixed orifice size will regulate flow through the valve in proportion to the square root of the pressure differential across ports 1 and 2.
- A balanced adjustment mechanism allows for easy adjustment even at high pressures.
- The sharp-edged orifice design minimizes flow variations due to viscosity changes.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge
 machining variations.

PERFORMANCE CURVES

Q = L/min.



Fully adjustable needle valve with reverse flow check SERIES 1 / CAPACITY: 28 L/min. (4,8 mm) / CAVITY: T-13A

snhy.com/NCCB

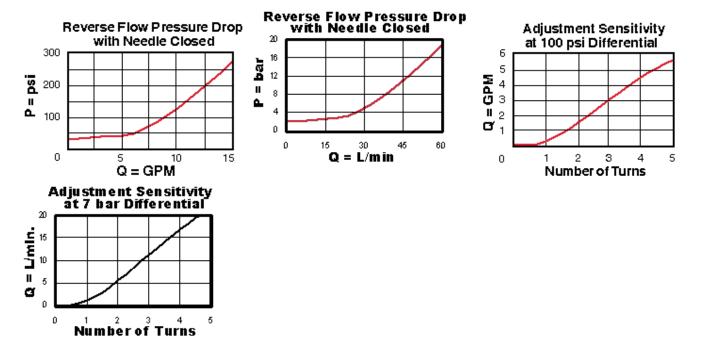
Needle valves with reverse-flow check are fully adjustable orifices used to regulate flow. They are infinitely adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity check valve provides unrestricted flow from port 2 to port 1. They are not pressure compensated.

TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-13A
Series	1
Capacity	28 L/min. (4,8 mm)
Maximum Operating Pressure	350 bar
Maximum Valve Leakage at 110 SUS (24 cSt)	0,7 cc/min.
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	5
Valve Hex Size	22,2 mm
Valve Installation Torque	41 - 47 Nm
Adjustment Screw Internal Hex Size	4 mm
Locknut Hex Size	15 mm
Locknut Torque	9 - 10 Nm
Seal kit - Cartridge	Buna: 990010007
Seal kit - Cartridge	EPDM: 990010014
Seal kit - Cartridge	Polyurethane: 990010002
Seal kit - Cartridge	Viton: 990010006
Model Weight	0.14 kg.

NOTES For Series 1 cartridges configured with an O control (panel mount handknob), a .75 in. (19 mm) diameter hole is required in the panel.

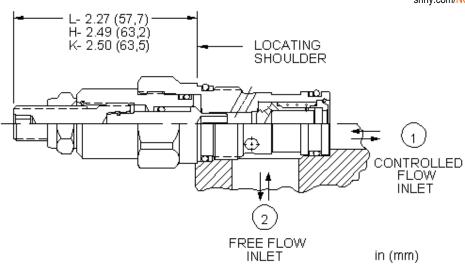

CONFIGURATION OPTIONS	Mod	lel Code Example: NCCBLCN	
CONTROL	(L) REVERSE FLOW CHECK	(C) SEAL MATERIAL	(N) MATERIAL/COATING

L Standard Screw Adjustment	C 30 psi (2 bar)	N Buna-N	Standard Material/Coating
H Calibrated Handknob with Detent Lock	A 4 psi (0,3 bar)	E EPDM	/AP Stainless Steel, Passivated
K Handknob	E 75 psi (5 bar)	V Viton	/LH Mild Steel, Zinc-Nickel

- R Capped Screw Adjustment
- Y Tri-Grip Handknob

- All 2-port flow control cartridges are physically and functionally interchangeable (i.e. same flow path, same cavity for a given frame size). However, cartridge extension dimensions from the mounting surface may vary.
- Because needle valves are non-compensating devices, the fixed orifice size will regulate flow through the valve in proportion to the square root of the pressure differential across ports 1 and 2.
- The sharp-edged orifice design minimizes flow variations due to viscosity changes.
- Cartridges configured with EPDM seals are for use in systems with phosphate ester fluids. Exposure to petroleum based fluids, greases and lubricants will damage the seals.

PERFORMANCE CURVES


MODEL NCCC

Fully adjustable needle valve with reverse flow check SERIES 1 / CAPACITY: 8 L/min. (2,3 mm) / CAVITY: T-13A

snhy.com/NCCC

Needle valves with reverse-flow check are fully adjustable orifices used to regulate flow. They are infinitely adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity check valve provides unrestricted flow from port 2 to port 1. They are not pressure compensated.

TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

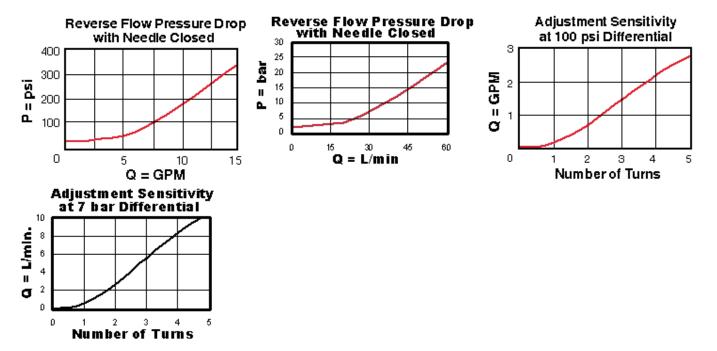
Cavity	T-13A
Series	1
Capacity	8 L/min. (2,3 mm)
Maximum Operating Pressure	350 bar
Maximum Valve Leakage at 110 SUS (24 cSt)	0,3 cc/min.
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	5
Valve Hex Size	22,2 mm
Valve Installation Torque	41 - 47 Nm
Adjustment Screw Internal Hex Size	4 mm
Locknut Hex Size	15 mm
Locknut Torque	9 - 10 Nm
Seal kit - Cartridge	Buna: 990010007
Seal kit - Cartridge	Polyurethane: 990010002
Seal kit - Cartridge	Viton: 990010006
Model Weight	0.14 kg.

NOTES For Series 1 cartridges configured with an O control (panel mount handknob), a .75 in. (19 mm) diameter hole is required in the panel.

CONFIGURATION OPTIONS

Model Code Example: NCCCLCN

CONTROL (L) REVERSE FLOW CHECK	(C)	SEAL MATERIAL	(N)	MATERIAL/COATING
L Standard Screw Adjustment	C 30 psi (2 bar)		N Buna-N		Standard Material/Coating
H Calibrated Handknob with Detent Lock	A 4 psi (0,3 bar)		V Viton		/AP Stainless Steel, Passivated
K Handknob	E 75 psi (5 bar)				/LH Mild Steel, Zinc-Nickel
A Llandkach with Danal Maunt					

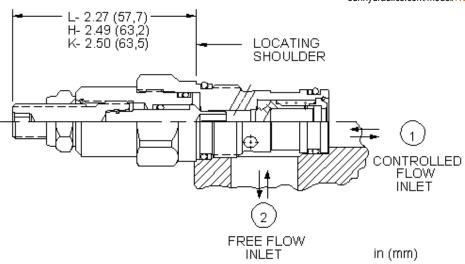

O Handknob with Panel Mount

R Capped Screw Adjustment

Y Tri-Grip Handknob

- All 2-port flow control cartridges are physically and functionally interchangeable (i.e. same flow path, same cavity for a given frame size). However, cartridge
 extension dimensions from the mounting surface may vary.
- Because needle valves are non-compensating devices, the fixed orifice size will regulate flow through the valve in proportion to the square root of the pressure differential across ports 1 and 2.
- The sharp-edged orifice design minimizes flow variations due to viscosity changes.

PERFORMANCE CURVES



Needle valves with reverse-flow check are fully adjustable orifices used to regulate flow. They are infinitely adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity check valve provides unrestricted flow from port 2 to port 1. They are not pressure compensated.

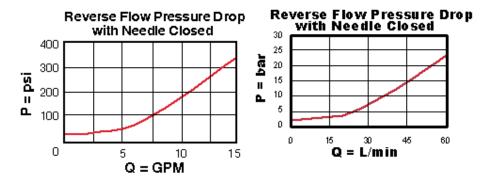
TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-13A
Series	1
Capacity	4 L/min. (1,5 mm)
Maximum Operating Pressure	350 bar
Maximum Valve Leakage at 110 SUS (24 cSt)	0,3 cc/min.
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	5
Valve Hex Size	22,2 mm
Valve Installation Torque	41 - 47 Nm
Adjustment Screw Internal Hex Size	4 mm
Locknut Hex Size	15 mm
Locknut Torque	9 - 10 Nm
Seal kit - Cartridge	Buna: 990010007
Seal kit - Cartridge	Polyurethane: 990010002
Seal kit - Cartridge	Viton: 990010006
Model Weight	0.14 kg.

NOTES For Series 1 cartridges configured with an O control (panel mount handknob), a .75 in. (19 mm) diameter hole is required in the panel.

CONFIGURATION OPTIONS

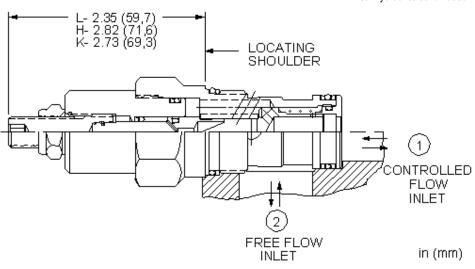

Model Code Example: NCCDLAN


CONTROL (L	REVERSE FLOW CHECK	(A) SEAL MATERIAL	(N) MATERIAL/COATING
L Standard Screw Adjustment	A 4 psi (0,3 bar)	N Buna-N	Standard Material/Coating
H Calibrated Handknob with Detent Lock	B 15 psi (1 bar)	V Viton	/AP Stainless Steel, Passivated
K Handknob	C 30 psi (2 bar)		/LH Mild Steel, Zinc-Nickel
O Handknob with Panel Mount	D 50 psi (3,5 bar)		
R Capped Screw Adjustment	E 75 psi (5 bar)		

Y Tri-Grip Handknob

- All 2-port flow control cartridges are physically and functionally interchangeable (i.e. same flow path, same cavity for a given frame size). However, cartridge extension dimensions from the mounting surface may vary.
- Because needle valves are non-compensating devices, the fixed orifice size will regulate flow through the valve in proportion to the square root of the pressure differential across ports 1 and 2.
- The sharp-edged orifice design minimizes flow variations due to viscosity changes.

PERFORMANCE CURVES



sunhydraulics.com/model/NCEB

Needle valves with reverse-flow check are fully adjustable orifices used to regulate flow. They are infinitely adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity check valve provides unrestricted flow from port 2 to port 1. They are not pressure compensated.

TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-5A
Series	2
Capacity	45 L/min. (6,4 mm)
Maximum Operating Pressure	350 bar
Maximum Valve Leakage at 110 SUS (24 cSt)	0,7 cc/min.
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	5
Valve Hex Size	28,6 mm
Valve Installation Torque	61 - 68 Nm
Adjustment Screw Internal Hex Size	4 mm
Locknut Hex Size	15 mm
Locknut Torque	9 - 10 Nm
Seal kit - Cartridge	Buna: 990203007
Seal kit - Cartridge	EPDM: 990203014
Seal kit - Cartridge	Viton: 990203006
Model Weight	0.27 kg.

NOTES For Series 1 cartridges configured with an O control (panel mount handknob), a .75 in. (19 mm) diameter hole is required in the panel.

CONFIGURATION OPTIONS

Model Code Example: NCEBLCN

CONTROL (L) REVERSE FLOW CHECK	(C)	SEAL MATERIAL	(N)	MATERIAL/COATING	
L Standard Screw Adjustment	C 30 psi (2 bar)		N Buna-N		Standard Material/Coating	
H Calibrated Handknob with Detent Lock	A 4 psi (0,3 bar)		E EPDM		/AP Stainless Steel, Passivated	
K Handknob	E 75 psi (5 bar)		V Viton		/LH Mild Steel, Zinc-Nickel	
Y Tri-Grip Handknob						

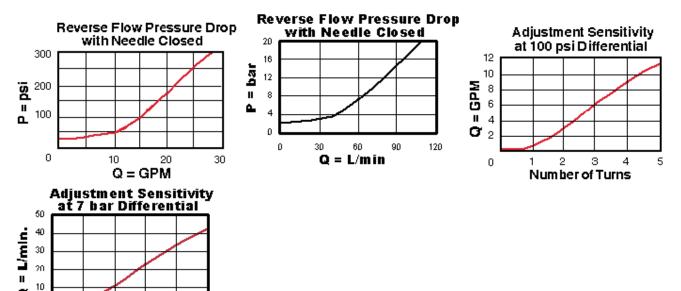
- All 2-port flow control cartridges are physically and functionally interchangeable (i.e. same flow path, same cavity for a given frame size). However, cartridge extension dimensions from the mounting surface may vary.
- Because needle valves are non-compensating devices, the fixed orifice size will regulate flow through the valve in proportion to the square root of the pressure differential across ports 1 and 2.
- A balanced adjustment mechanism allows for easy adjustment even at high pressures.
- The sharp-edged orifice design minimizes flow variations due to viscosity changes.
- Cartridges configured with EPDM seals are for use in systems with phosphate ester fluids. Exposure to petroleum based fluids, greases and lubricants will damage the seals.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge
 machining variations.

PERFORMANCE CURVES

2

3

Number of Turns

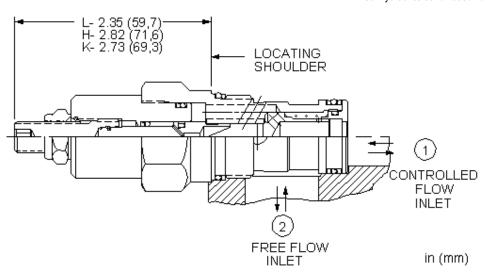

4


5

۳ ۵

D

1



MODEL NCEC Fully adjustable needle valve with reverse flow check SERIES 2 / CAPACITY: 11 L/min. (3,3 mm) / CAVITY: T-5A

sunhydraulics.com/model/NCEC

Needle valves with reverse-flow check are fully adjustable orifices used to regulate flow. They are infinitely adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity check valve provides unrestricted flow from port 2 to port 1. They are not pressure compensated.

TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-5A
Series	2
Capacity	11 L/min. (3,3 mm)
Maximum Operating Pressure	350 bar
Maximum Valve Leakage at 110 SUS (24 cSt)	0,3 cc/min.
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	5
Valve Hex Size	28,6 mm
Valve Installation Torque	61 - 68 Nm
Adjustment Screw Internal Hex Size	4 mm
Locknut Hex Size	15 mm
Locknut Torque	9 - 10 Nm
Seal kit - Cartridge	Buna: 990203007
Seal kit - Cartridge	Viton: 990203006
Model Weight	0.27 kg.

NOTES For Series 1 cartridges configured with an O control (panel mount handknob), a .75 in. (19 mm) diameter hole is required in the panel.

CONFIGURATION OPTIONS

Model Code Example: NCECLCN

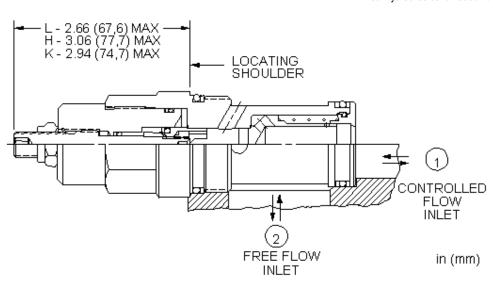

CONTROL (L)	REVERSE FLOW CHECK	(C) SEAL MATERIAL	(N) MATERIAL/COATING
L Standard Screw Adjustment	C 30 psi (2 bar)	N Buna-N	Standard Material/Coating
H Calibrated Handknob with Detent Lock	A 4 psi (0,3 bar)	V Viton	/LH Mild Steel, Zinc-Nickel
K Handknob	E 75 psi (5 bar)		

Y Tri-Grip Handknob

© 2019 Sun Hydraulics

- All 2-port flow control cartridges are physically and functionally interchangeable (i.e. same flow path, same cavity for a given frame size). However, cartridge extension dimensions from the mounting surface may vary.
- Because needle valves are non-compensating devices, the fixed orifice size will regulate flow through the valve in proportion to the square root of the pressure differential across ports 1 and 2.
- A balanced adjustment mechanism allows for easy adjustment even at high pressures.
- The sharp-edged orifice design minimizes flow variations due to viscosity changes.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge
 machining variations.

PERFORMANCE CURVES



sunhydraulics.com/model/NCFB

Needle valves with reverse-flow check are fully adjustable orifices used to regulate flow. They are infinitely adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity check valve provides unrestricted flow from port 2 to port 1. They are not pressure compensated.

TECHNICAL DATA

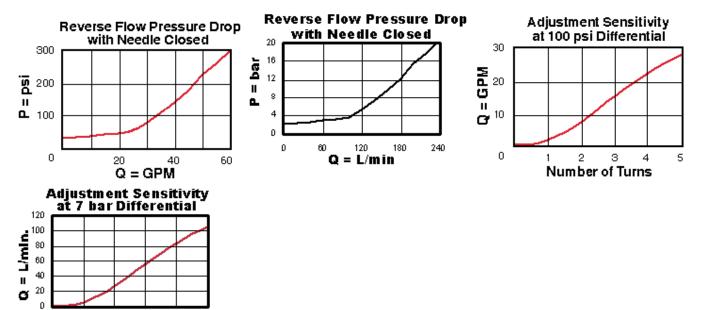
NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-16A
Series	3
Capacity	120 L/min. (9,7 mm)
Maximum Operating Pressure	350 bar
Maximum Valve Leakage at 110 SUS (24 cSt)	0,7 cc/min.
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	5
Valve Hex Size	31,8 mm
Valve Installation Torque	203 - 217 Nm
Adjustment Screw Internal Hex Size	4 mm
Locknut Hex Size	15 mm
Locknut Torque	9 - 10 Nm
Seal kit - Cartridge	Buna: 990016007
Seal kit - Cartridge	EPDM: 990016014
Seal kit - Cartridge	Polyurethane: 990016002
Seal kit - Cartridge	Viton: 990016006
Model Weight	0.57 kg.

CONFIGURATION OPTIONS

Model Code Example: NCFBLCN

CONTROL (L)	REVERSE FLOW CHECK (C)	SEAL MATERIAL (N)	MATERIAL/COATING
L Standard Screw Adjustment	C 30 psi (2 bar)	N Buna-N	Standard Material/Coating
H Calibrated Handknob with Detent Lock	A 4 psi (0,3 bar)	E EPDM	/AP Stainless Steel, Passivated
K Handknob	E 75 psi (5 bar)	V Viton	/LH Mild Steel, Zinc-Nickel
Y Tri-Grip Handknob			

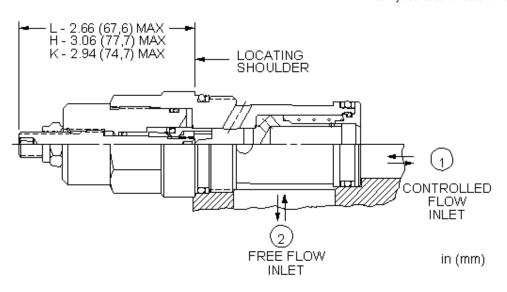

- All 2-port flow control cartridges are physically and functionally interchangeable (i.e. same flow path, same cavity for a given frame size). However, cartridge extension dimensions from the mounting surface may vary.
- Because needle valves are non-compensating devices, the fixed orifice size will regulate flow through the valve in proportion to the square root of the pressure differential across ports 1 and 2.
- A balanced adjustment mechanism allows for easy adjustment even at high pressures.
- The sharp-edged orifice design minimizes flow variations due to viscosity changes.
- Cartridges configured with EPDM seals are for use in systems with phosphate ester fluids. Exposure to petroleum based fluids, greases and lubricants will damage the seals.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge
 machining variations.

PERFORMANCE CURVES

٥

Number of Turns

5



sunhydraulics.com/model/NCFC

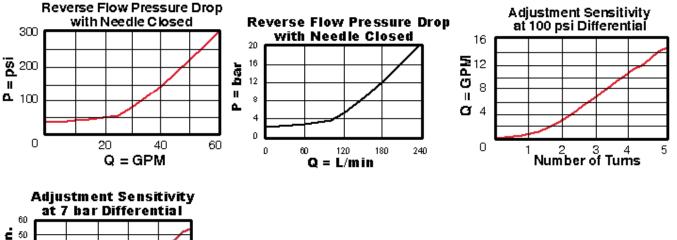
Needle valves with reverse-flow check are fully adjustable orifices used to regulate flow. They are infinitely adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity check valve provides unrestricted flow from port 2 to port 1. They are not pressure compensated.

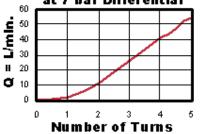
TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-16A
Series	3
Capacity	60 L/min. (7,1 mm)
Maximum Operating Pressure	350 bar
Maximum Valve Leakage at 110 SUS (24 cSt)	0,3 cc/min.
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	5
Valve Hex Size	31,8 mm
Valve Installation Torque	203 - 217 Nm
Adjustment Screw Internal Hex Size	4 mm
Locknut Hex Size	15 mm
Locknut Torque	9 - 10 Nm
Seal kit - Cartridge	Buna: 990016007
Seal kit - Cartridge	Polyurethane: 990016002
Seal kit - Cartridge	Viton: 990016006
Model Weight	0.57 kg.

CONFIGURATION OPTIONS

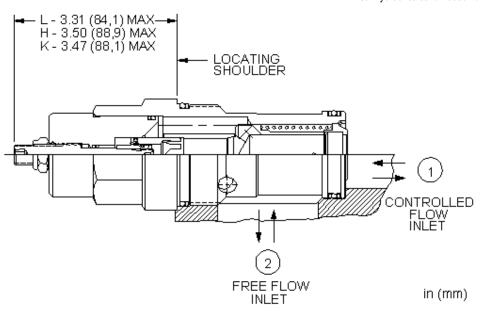

Model Code Example: NCFCLCN


CONTROL (L) REVERSE FLOW CHECK (C)	SEAL MATERIAL (N)	MATERIAL/COATING
L Standard Screw Adjustment	C 30 psi (2 bar)	N Buna-N	Standard Material/Coating
H Calibrated Handknob with Detent Lock	A 4 psi (0,3 bar)	E EPDM	/AP Stainless Steel, Passivated
K Handknob	E 75 psi (5 bar)	V Viton	/LH Mild Steel, Zinc-Nickel


Y Tri-Grip Handknob

- All 2-port flow control cartridges are physically and functionally interchangeable (i.e. same flow path, same cavity for a given frame size). However, cartridge
 extension dimensions from the mounting surface may vary.
- Because needle valves are non-compensating devices, the fixed orifice size will regulate flow through the valve in proportion to the square root of the pressure differential across ports 1 and 2.
- A balanced adjustment mechanism allows for easy adjustment even at high pressures.
- The sharp-edged orifice design minimizes flow variations due to viscosity changes.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge
 machining variations.

PERFORMANCE CURVES


MODEL NCGB

Fully adjustable needle valve with reverse flow check SERIES 4 / CAPACITY: 240 L/min. (14,2 mm) / CAVITY: T-18A

sunhydraulics.com/model/NCGB

Needle valves with reverse-flow check are fully adjustable orifices used to regulate flow. They are infinitely adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity check valve provides unrestricted flow from port 2 to port 1. They are not pressure compensated.

TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-18A
Series	4
Capacity	240 L/min. (14,2 mm)
Maximum Operating Pressure	350 bar
Maximum Valve Leakage at 110 SUS (24 cSt)	0,7 cc/min.
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	5
Valve Hex Size	41,3 mm
Valve Installation Torque	474 - 508 Nm
Adjustment Screw Internal Hex Size	4 mm
Locknut Hex Size	15 mm
Locknut Torque	9 - 10 Nm
Seal kit - Cartridge	Buna: 990018007
Seal kit - Cartridge	EPDM: 990018014
Seal kit - Cartridge	Polyurethane: 990018002
Seal kit - Cartridge	Viton: 990018006
Model Weight	1.21 kg.

CONFIGURATION OPTIONS

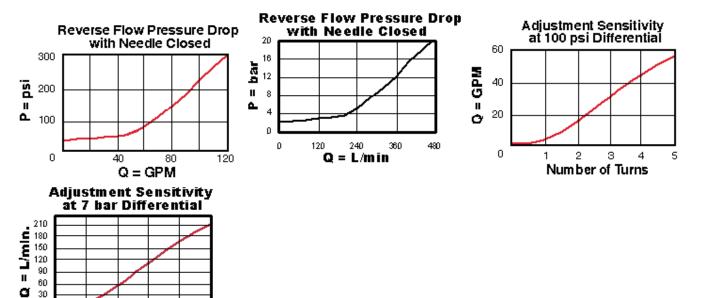
Model Code Example: NCGBLCN

CONTROL (L)	REVERSE FLOW CHECK	(C) S	EAL MATERIAL	(N)	MATERIAL/COATING
L Standard Screw Adjustment	C 30 psi (2 bar)		N Buna-N		Standard Material/Coating
H Calibrated Handknob with Detent Lock	A 4 psi (0,3 bar)		E EPDM		/AP Stainless Steel, Passivated
K Handknob	E 75 psi (5 bar)		V Viton		/LH Mild Steel, Zinc-Nickel
Y Tri-Grip Handknob					

- All 2-port flow control cartridges are physically and functionally interchangeable (i.e. same flow path, same cavity for a given frame size). However, cartridge extension dimensions from the mounting surface may vary.
- Because needle valves are non-compensating devices, the fixed orifice size will regulate flow through the valve in proportion to the square root of the pressure differential across ports 1 and 2.
- A balanced adjustment mechanism allows for easy adjustment even at high pressures.
- The sharp-edged orifice design minimizes flow variations due to viscosity changes.
- Cartridges configured with EPDM seals are for use in systems with phosphate ester fluids. Exposure to petroleum based fluids, greases and lubricants will damage the seals.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge
 machining variations.

PERFORMANCE CURVES

0

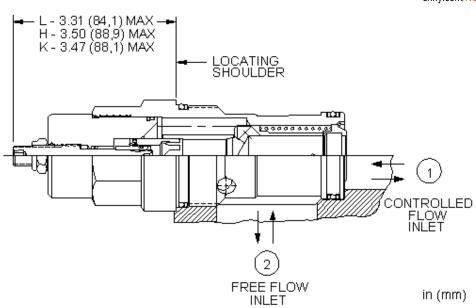

2

Number of Turns

3

4

5


MODEL NCGC

Fully adjustable needle valve with reverse flow check SERIES 4 / CAPACITY: 120 L/min. (9,7 mm) / CAVITY: T-18A

snhy.com/NCGC

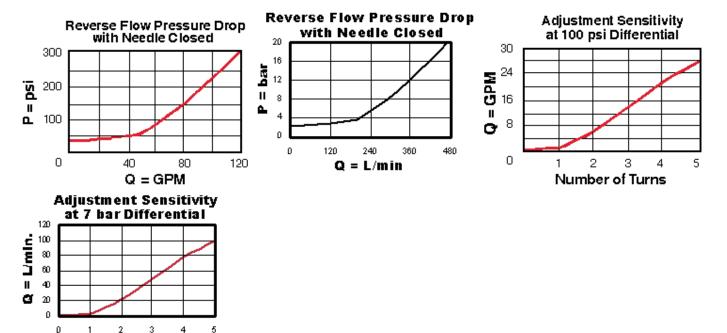
Needle valves with reverse-flow check are fully adjustable orifices used to regulate flow. They are infinitely adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity check valve provides unrestricted flow from port 2 to port 1. They are not pressure compensated.

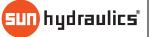
TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-18A
Series	4
Capacity	120 L/min. (9,7 mm)
Maximum Operating Pressure	350 bar
Maximum Valve Leakage at 110 SUS (24 cSt)	0,3 cc/min.
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	5
Valve Hex Size	41,3 mm
Valve Installation Torque	474 - 508 Nm
Adjustment Screw Internal Hex Size	4 mm
Locknut Hex Size	15 mm
Locknut Torque	9 - 10 Nm
Seal kit - Cartridge	Buna: 990018007
Seal kit - Cartridge	Polyurethane: 990018002
Seal kit - Cartridge	Viton: 990018006
Model Weight	1.21 kg.

CONFIGURATION OPTIONS

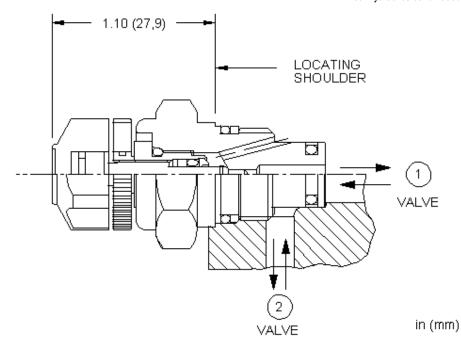

Model Code Example: NCGCLCN


CONTROL (L) REVERSE FLOW CHECK	(C) SEAL MATERIAL	(N)
L Standard Screw Adjustment	C 30 psi (2 bar)	N Buna-N	
H Calibrated Handknob with Detent Lock	A 4 psi (0,3 bar)	V Viton	
K Handknob	E 75 psi (5 bar)		
Y Tri-Grip Handknob			

- All 2-port flow control cartridges are physically and functionally interchangeable (i.e. same flow path, same cavity for a given frame size). However, cartridge extension dimensions from the mounting surface may vary.
- Because needle valves are non-compensating devices, the fixed orifice size will regulate flow through the valve in proportion to the square root of the pressure differential across ports 1 and 2.
- A balanced adjustment mechanism allows for easy adjustment even at high pressures.
- The sharp-edged orifice design minimizes flow variations due to viscosity changes.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge
 machining variations.

PERFORMANCE CURVES

Number of Turns



MODEL NFAB

sunhydraulics.com/model/NFAB

Two-port, pilot-stage needle valves are fully adjustable devices used to regulate pilot flow in a main-stage valve or to meter in/out flow in low flow applications. These cartridges are designed for pilot flow applications and utilize Sun's T-8A cavity so they can be used in conjunction with Sun's pilot-operated, main-stage valves.

TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-8A
Series	P
Capacity	0,8 L/min. (0,9 mm)
Maximum Operating Pressure	350 bar
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	3
Effective Orifice Size	0,9 mm
Valve Hex Size	22,2 mm
Valve Installation Torque	27 - 33 Nm
Seal kit - Cartridge	Buna: 990008007
Seal kit - Cartridge	EPDM: 990008014
Seal kit - Cartridge	Polyurethane: 990008002
Seal kit - Cartridge	Viton: 990008006

TEST SPECIFICATION DATA

Adjustment - No. of CCW Turns from Fully Closed to Fully Open	3
Valve Installation Torque	27 - 33 Nm
Model Weight	0.07 kg.

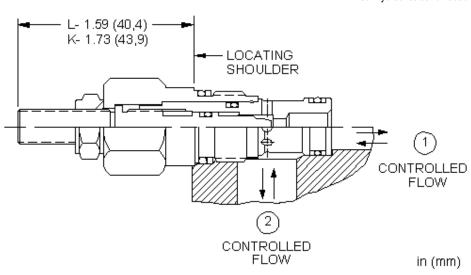
CONFIGURATION OPTIONS

Model Code Example: NFABKXN

CONTROL (K)	MAXIMUM ORIFICE DIAMETER (X) <u>SEAL MATERIAL (N)</u>
K Handknob	X .03 in. (0,8 mm)	N Buna-N
		E EPDM
		V Viton

TECHNICAL FEATURES

- Utilizes the Sun T-8A 2-port cavity making it the ideal choice to use in conjunction with Sun's main stage pilot or vent-to-operate cartridges. Separate pilot lines are eliminated and only one cavity needs to be machined to accommodate both the control and primary function. Note: All 2-position, 2-way pilot stage control cartridges utilize the same cavity and are physically interchangeable. Functionality is the only consideration.
- Note: The main stage valve should first be installed to the correct torque value followed by the T-8A pilot control section into the main stage valve to its required torque value.
- Ports 1 and 2 may be pressured to 5000 psi (350 bar).
- Needle adjusts from fully closed to fully open in three complete turns resulting in extremely fine resolution.
- Adjustment mechanism equipped with locking device to maintain consistent orifice dia/flow rate.
- Leakage rate at shutoff is less than 1 drop/min.



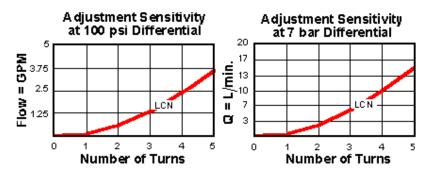
Fully adjustable needle valve CAPACITY: 20 L/min. (4 mm) / CAVITY: T-162A

sunhydraulics.com/model/NFBC

Needle valves are fully adjustable orifices used to regulate flow. They are infinitely adjustable from fully closed up to the maximum orifice diameter. They are not pressure compensated and may be used as flow controls or as shutoff valves.

TECHNICAL DATA

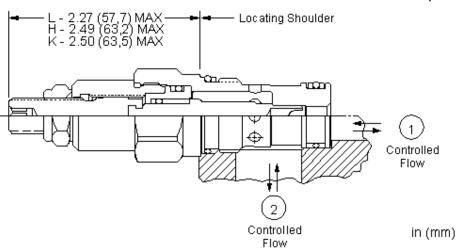
NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.


Cavity	T-162A
Series	0
Capacity	20 L/min. (4 mm)
Maximum Operating Pressure	350 bar
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	5
Valve Hex Size	19,1 mm
Valve Installation Torque	27 - 33 Nm
Adjustment Screw Internal Hex Size	4 mm
Locknut Hex Size	12,7 mm
Locknut Torque	9 - 10 Nm
Seal kit - Cartridge	Buna: 990162007
Seal kit - Cartridge	EPDM: 990162014
Seal kit - Cartridge	Polyurethane: 990162002
Seal kit - Cartridge	Viton: 990162006
Model Weight	0.08 kg.

CONFIGURATION OPTIONS

Model Code Example: NFBCLCN

CONTROL	(L)	MAXIMUM ORIFICE DIAMETER	(C)	SEAL MATERIAL	(N)	MATERIAL/COATING
L Standard Screw Adjustment		C .16 in. (4 mm)		N Buna-N		Standard Material/Coating
K Handknob				E EPDM		/AP Stainless Steel, Passivated
W Hex Wrench Adjustment				V Viton		/LH Mild Steel, Zinc-Nickel


- All 2-port flow control cartridges are physically and functionally interchangeable (i.e. same flow path, same cavity for a given frame size). However, cartridge extension dimensions from the mounting surface may vary.
- Because needle valves are non-compensating devices, the fixed orifice size will regulate flow through the valve in proportion to the square root of the pressure differential across ports 1 and 2.
- A balanced adjustment mechanism allows for easy adjustment even at high pressures.
- The sharp-edged orifice design minimizes flow variations due to viscosity changes.
- The flow path through this valve is bi-directional. The preferred path is port 1 to 2, to allow interchangeability with other flow controls.
- There is no leakage when the adjustment mechanism is turned to the shut-off position.
- Cartridges configured with EPDM seals are for use in systems with phosphate ester fluids. Exposure to petroleum based fluids, greases and lubricants will damage the seals.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge
 machining variations.

snhy.com/NFCC

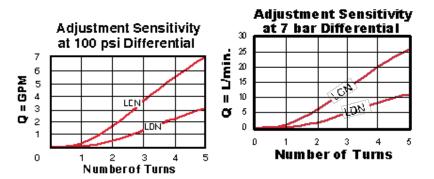
Needle valves are fully adjustable orifices used to regulate flow. They are infinitely adjustable from fully closed up to the maximum orifice diameter. They are not pressure compensated and may be used as flow controls or as shutoff valves.

TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-13A
Series	1
Capacity	28 L/min. (4,8 mm)
Maximum Operating Pressure	350 bar
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	5
Valve Hex Size	22,2 mm
Valve Installation Torque	41 - 47 Nm
Adjustment Screw Internal Hex Size	4 mm
Locknut Hex Size	15 mm
Locknut Torque	9 - 10 Nm
Seal kit - Cartridge	Buna: 990010007
Seal kit - Cartridge	EPDM: 990010014
Seal kit - Cartridge	Polyurethane: 990010002
Seal kit - Cartridge	Viton: 990010006
Model Weight	0.15 kg.

NOTES For Series 1 cartridges configured with an O control (panel mount handknob), a .75 in. (19 mm) diameter hole is required in the panel.

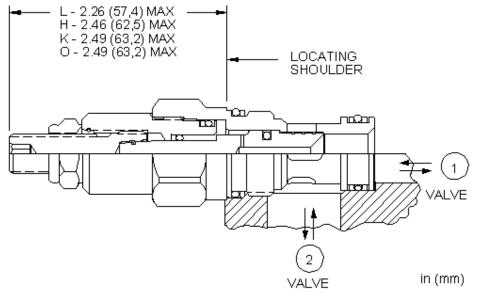

CONFIGURATION OPTIONS

Model Code Example: NFCCLCN

CONTROL (L)	MAXIMUM ORIFICE DIAMETER (C) SEAL MATERIAL	N) MATERIAL/COATING
L Standard Screw Adjustment	C .19 in. (4.8 mm)	N Buna-N	Standard Material/Coating
H Calibrated Handknob with Detent Lock	D .09 in. (2,3 mm)	E EPDM	/AP Stainless Steel, Passivated
K Handknob		V Viton	/LH Mild Steel, Zinc-Nickel
Y Tri-Grip Handknob, Flow Control			

© 2019 Sun Hydraulics

- All 2-port flow control cartridges are physically and functionally interchangeable (i.e. same flow path, same cavity for a given frame size). However, cartridge
 extension dimensions from the mounting surface may vary.
- Because needle valves are non-compensating devices, the fixed orifice size will regulate flow through the valve in proportion to the square root of the pressure differential across ports 1 and 2.
- A balanced adjustment mechanism allows for easy adjustment even at high pressures.
- The sharp-edged orifice design minimizes flow variations due to viscosity changes.
- The flow path through this valve is bi-directional. The preferred path is port 1 to 2, to allow interchangeability with other flow controls.
- There is no leakage when the adjustment mechanism is turned to the shut-off position.
- Cartridges configured with EPDM seals are for use in systems with phosphate ester fluids. Exposure to petroleum based fluids, greases and lubricants will damage the seals.



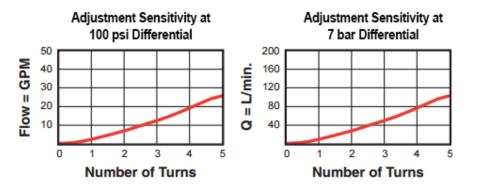
sunhydraulics.com/model/NFCD

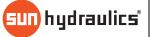
Needle valves are fully adjustable orifices used to regulate flow. They are infinitely adjustable from fully closed up to the maximum orifice diameter. They are not pressure compensated and may be used as flow controls or as shutoff valves.

TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

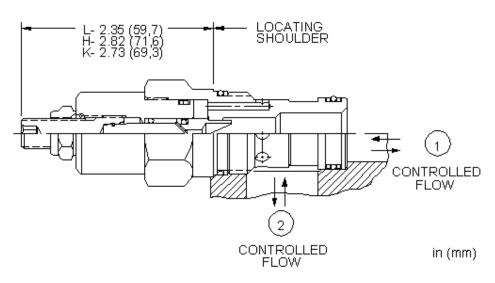
Cavity	T-13A	
Series	1	
Capacity	80 L/min. (8,4 mm)	
Maximum Operating Pressure	350 bar	
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	5	
Valve Hex Size	22,2 mm	
Valve Installation Torque	41 - 47 Nm	
Adjustment Screw Internal Hex Size	4 mm	
Locknut Hex Size	15 mm	
Locknut Torque	9 - 10 Nm	
Seal kit - Cartridge	Buna: 990010007	
Seal kit - Cartridge	EPDM: 990010014	
Seal kit - Cartridge	Polyurethane: 990010002	
Seal kit - Cartridge	Viton: 990010006	
Model Weight	0.14 kg.	


NOTES For Series 1 cartridges configured with an O control (panel mount handknob), a .75 in. (19 mm) diameter hole is required in the panel.


CONFIGURATION OPTIONS

Model Code Example: NFCDLFN

CONTROL (L)	MAXIMUM ORIFICE DIAMETER (F) SEAL MATERIAL (N)	MATERIAL/COATING
L Standard Screw Adjustment	F .33 in. (8,4 mm)	N Buna-N	Standard Material/Coating
H Calibrated Handknob with Detent Lock		E EPDM	/AP Stainless Steel, Passivated
K Handknob		V Viton	/LH Mild Steel, Zinc-Nickel
Y Tri-Grip Handknob			


- All 2-port flow control cartridges are physically and functionally interchangeable (i.e. same flow path, same cavity for a given frame size). However, cartridge extension dimensions from the mounting surface may vary.
- Because needle valves are non-compensating devices, the fixed orifice size will regulate flow through the valve in proportion to the square root of the pressure differential across ports 1 and 2.
- A balanced adjustment mechanism allows for easy adjustment even at high pressures.
- The sharp-edged orifice design minimizes flow variations due to viscosity changes.
- The flow path through this valve is bi-directional. The preferred path is port 1 to 2, to allow interchangeability with other flow controls.
- There is no leakage when the adjustment mechanism is turned to the shut-off position.
- Cartridges configured with EPDM seals are for use in systems with phosphate ester fluids. Exposure to petroleum based fluids, greases and lubricants will damage the seals.

snhy.com/NFDC

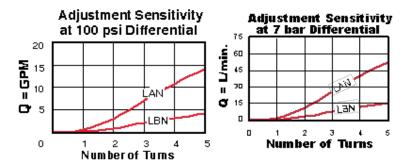
Needle valves are fully adjustable orifices used to regulate flow. They are infinitely adjustable from fully closed up to the maximum orifice diameter. They are not pressure compensated and may be used as flow controls or as shutoff valves.

TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-5A
Series	2
Capacity	45 L/min. (6,4 mm)
Maximum Operating Pressure	350 bar
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	5
Valve Hex Size	28,6 mm
Valve Installation Torque	61 - 68 Nm
Adjustment Screw Internal Hex Size	4 mm
Locknut Hex Size	15 mm
Locknut Torque	9 - 10 Nm
Seal kit - Cartridge	Buna: 990203007
Seal kit - Cartridge	EPDM: 990203014
Seal kit - Cartridge	Viton: 990203006
Model Weight	0.28 kg.

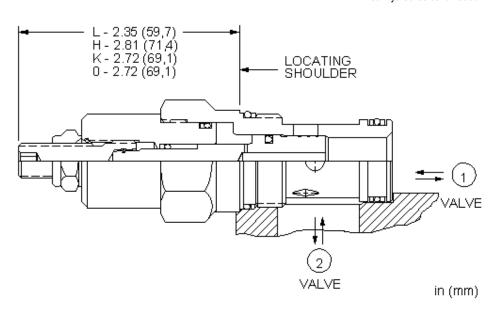
NOTES For Series 1 cartridges configured with an O control (panel mount handknob), a .75 in. (19 mm) diameter hole is required in the panel.


CONFIGURATION OPTIONS

Model Code Example: NFDCLAN

CONTROL (L)	MAXIMUM ORIFICE DIAMETER	(A) SEAL MATERIAL	(N)	MATERIAL/COATING
L Standard Screw Adjustment	A .25 in. (6,4 mm)	N Buna-N		Standard Material/Coating
H Calibrated Handknob with Detent Lock	B .12 in. (3,0 mm)	E EPDM		/AP Stainless Steel, Passivated
K Handknob		V Viton		/LH Mild Steel, Zinc-Nickel
Y Tri-Grip Handknob				

© 2019 Sun Hydraulics


- All 2-port flow control cartridges are physically and functionally interchangeable (i.e. same flow path, same cavity for a given frame size). However, cartridge
 extension dimensions from the mounting surface may vary.
- Because needle valves are non-compensating devices, the fixed orifice size will regulate flow through the valve in proportion to the square root of the pressure differential across ports 1 and 2.
- A balanced adjustment mechanism allows for easy adjustment even at high pressures.
- The sharp-edged orifice design minimizes flow variations due to viscosity changes.
- The flow path through this valve is bi-directional. The preferred path is port 1 to 2, to allow interchangeability with other flow controls.
- There is no leakage when the adjustment mechanism is turned to the shut-off position.
- Cartridges configured with EPDM seals are for use in systems with phosphate ester fluids. Exposure to petroleum based fluids, greases and lubricants will damage the seals.

sunhydraulics.com/model/NFDD

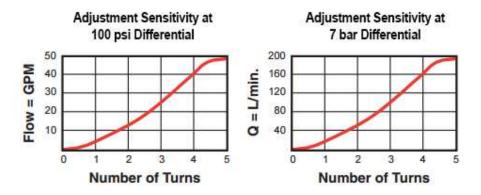
Needle valves are fully adjustable orifices used to regulate flow. They are infinitely adjustable from fully closed up to the maximum orifice diameter. They are not pressure compensated and may be used as flow controls or as shutoff valves.

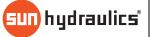
TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity T-5A		
Series	2	
Capacity	200 L/min. (12,7 mm)	
Maximum Operating Pressure	350 bar	
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	5	
Valve Hex Size	28,6 mm	
Valve Installation Torque	61 - 68 Nm	
Adjustment Screw Internal Hex Size	4 mm	
Locknut Hex Size	15 mm	
Locknut Torque	9 - 10 Nm	
Seal kit - Cartridge	Buna: 990203007	
Seal kit - Cartridge	Polyurethane: 990203014	
Seal kit - Cartridge	Viton: 990203006	
Model Weight	0.28 kg.	

NOTES For Series 1 cartridges configured with an O control (panel mount handknob), a .75 in. (19 mm) diameter hole is required in the panel.

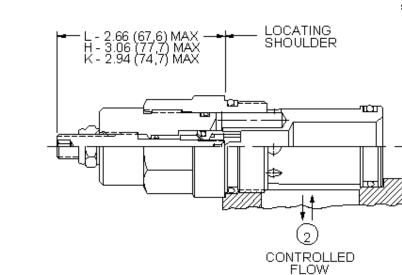

CONFIGURATION OPTIONS


Model Code Example: NFDDLGN

CONTROL	(L) MAXIMUM ORIFICE DIAMETER	(G) SEAL MATERIAL	(N) MATERIAL/COATING
L Standard Screw Adjustment	G .5 in. (12,7 mm)	N Buna-N	Standard Material/Coating
H Calibrated Handknob with Detent	Lock	E EPDM	/AP Stainless Steel, Passivated
K Handknob		V Viton	/LH Mild Steel, Zinc-Nickel

Y Tri-Grip Handknob

- All 2-port flow control cartridges are physically and functionally interchangeable (i.e. same flow path, same cavity for a given frame size). However, cartridge
 extension dimensions from the mounting surface may vary.
- Because needle valves are non-compensating devices, the fixed orifice size will regulate flow through the valve in proportion to the square root of the pressure differential across ports 1 and 2.
- A balanced adjustment mechanism allows for easy adjustment even at high pressures.
- The sharp-edged orifice design minimizes flow variations due to viscosity changes.
- The flow path through this valve is bi-directional. The preferred path is port 1 to 2, to allow interchangeability with other flow controls.
- There is no leakage when the adjustment mechanism is turned to the shut-off position.
- Cartridges configured with EPDM seals are for use in systems with phosphate ester fluids. Exposure to petroleum based fluids, greases and lubricants will damage the seals.



sunhydraulics.com/model/NFEC

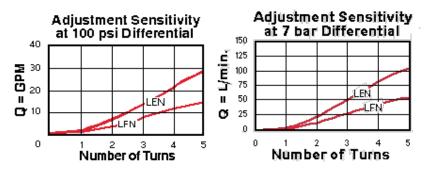
DNTROLLED FLOW

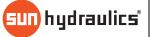
in (mm)

Needle valves are fully adjustable orifices used to regulate flow. They are infinitely adjustable from fully closed up to the maximum orifice diameter. They are not pressure compensated and may be used as flow controls or as shutoff valves.

TECHNICAL DATA

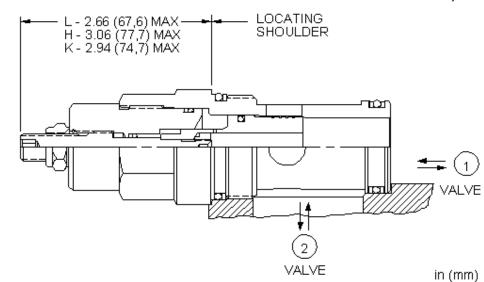
NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.


Cavity	T-16A
Series	3
Capacity	120 L/min. (9,7 mm)
Maximum Operating Pressure	350 bar
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	5
Valve Hex Size	31,8 mm
Valve Installation Torque	203 - 217 Nm
Adjustment Screw Internal Hex Size	4 mm
Locknut Hex Size	15 mm
Locknut Torque	9 - 10 Nm
Seal kit - Cartridge	Buna: 990016007
Seal kit - Cartridge	EPDM: 990016014
Seal kit - Cartridge	Polyurethane: 990016002
Seal kit - Cartridge	Viton: 990016006
Model Weight	0.55 kg.


CONFIGURATION OPTIONS

Model Code Example: NFECLEN

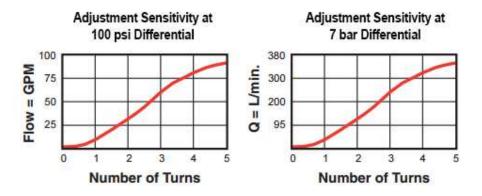
CONTROL (L)	MAXIMUM ORIFICE DIAMETER	(E) SEAL MATERIAL (N)	MATERIAL/COATING
L Standard Screw Adjustment	E .38 in. (9,7 mm)	N Buna-N	Standard Material/Coating
H Calibrated Handknob with Detent Lock	F .28 in. (7,1 mm)	E EPDM	/AP Stainless Steel, Passivated
K Handknob		V Viton	/LH Mild Steel, Zinc-Nickel
Y Tri-Grip Handknob			


- All 2-port flow control cartridges are physically and functionally interchangeable (i.e. same flow path, same cavity for a given frame size). However, cartridge
 extension dimensions from the mounting surface may vary.
- Because needle valves are non-compensating devices, the fixed orifice size will regulate flow through the valve in proportion to the square root of the pressure differential across ports 1 and 2.
- A balanced adjustment mechanism allows for easy adjustment even at high pressures.
- The sharp-edged orifice design minimizes flow variations due to viscosity changes.
- The flow path through this valve is bi-directional. The preferred path is port 1 to 2, to allow interchangeability with other flow controls.
- There is no leakage when the adjustment mechanism is turned to the shut-off position.
- Cartridges configured with EPDM seals are for use in systems with phosphate ester fluids. Exposure to petroleum based fluids, greases and lubricants will damage the seals.

snhy.com/NFED

Needle valves are fully adjustable orifices used to regulate flow. They are infinitely adjustable from fully closed up to the maximum orifice diameter. They are not pressure compensated and may be used as flow controls or as shutoff valves.

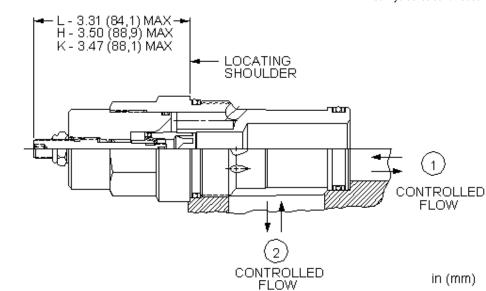
TECHNICAL DATA


NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-16A		
Series	3		
Capacity	340 L/min. (17,5 mm)		
Maximum Operating Pressure	350 bar		
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	5		
Valve Hex Size	31,8 mm		
Valve Installation Torque	203 - 217 Nm		
Adjustment Screw Internal Hex Size	4 mm		
Locknut Hex Size	15 mm		
Locknut Torque	9 - 10 Nm		
Seal kit - Cartridge	Buna: 990016007		
Seal kit - Cartridge	EPDM: 990016014		
Seal kit - Cartridge	Polyurethane: 990016002		
Seal kit - Cartridge	Viton: 990016006		
Model Weight	0.56 kg.		

CONFIGURATION OPTIONS		Model Co	de Ex	ample: NFEDLHN		
CONTROL	(L)	MAXIMUM ORIFICE DIAMETER	(H)	SEAL MATERIAL	(N)	MATERIAL/COATING
L Standard Screw Adjustment		H .69 in. (17,5 mm)		N Buna-N		Standard Material/Coating
H Calibrated Handknob with Detent Lo	ock			E EPDM		/AP Stainless Steel, Passivated
K Handknob				V Viton		/LH Mild Steel, Zinc-Nickel

Y Tri-Grip Handknob


- All 2-port flow control cartridges are physically and functionally interchangeable (i.e. same flow path, same cavity for a given frame size). However, cartridge
 extension dimensions from the mounting surface may vary.
- Because needle valves are non-compensating devices, the fixed orifice size will regulate flow through the valve in proportion to the square root of the pressure differential across ports 1 and 2.
- A balanced adjustment mechanism allows for easy adjustment even at high pressures.
- The sharp-edged orifice design minimizes flow variations due to viscosity changes.
- The flow path through this valve is bi-directional. The preferred path is port 1 to 2, to allow interchangeability with other flow controls.
- There is no leakage when the adjustment mechanism is turned to the shut-off position.
- Cartridges configured with EPDM seals are for use in systems with phosphate ester fluids. Exposure to petroleum based fluids, greases and lubricants will damage the seals.

sunhydraulics.com/model/NFFC

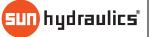
Needle valves are fully adjustable orifices used to regulate flow. They are infinitely adjustable from fully closed up to the maximum orifice diameter. They are not pressure compensated and may be used as flow controls or as shutoff valves.

TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-18A		
Series	4		
Capacity	240 L/min. (14,2 mm)		
Maximum Operating Pressure	350 bar		
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	5		
Valve Hex Size	41,3 mm		
Valve Installation Torque	474 - 508 Nm		
Adjustment Screw Internal Hex Size	4 mm		
Locknut Hex Size	15 mm		
Locknut Torque	9 - 10 Nm		
Seal kit - Cartridge	Buna: 990018007		
Seal kit - Cartridge	EPDM: 990018014		
Seal kit - Cartridge	Polyurethane: 990018002		
Seal kit - Cartridge	Viton: 990018006		
Model Weight	1.15 kg.		

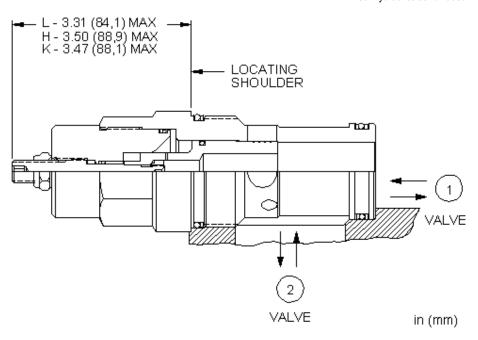
CONFIGURATION OPTIONS


Model Code Example: NFFCLGN

CONTROL (I	.) MAXIMUM ORIFICE DIAMETER	(G)	SEAL MATERIAL	(N)	MATERIAL/COATING
L Standard Screw Adjustment	G .56 in. (14,2 mm)		N Buna-N		Standard Material/Coating
H Calibrated Handknob with Detent Lock	H .38 in. (9,7 mm)		E EPDM		/AP Stainless Steel, Passivated
K Handknob			V Viton		/LH Mild Steel, Zinc-Nickel

Y Tri-Grip Handknob, Flow Control

- All 2-port flow control cartridges are physically and functionally interchangeable (i.e. same flow path, same cavity for a given frame size). However, cartridge
 extension dimensions from the mounting surface may vary.
- Because needle valves are non-compensating devices, the fixed orifice size will regulate flow through the valve in proportion to the square root of the pressure differential across ports 1 and 2.
- A balanced adjustment mechanism allows for easy adjustment even at high pressures.
- The sharp-edged orifice design minimizes flow variations due to viscosity changes.
- The flow path through this valve is bi-directional. The preferred path is port 1 to 2, to allow interchangeability with other flow controls.
- There is no leakage when the adjustment mechanism is turned to the shut-off position.
- Cartridges configured with EPDM seals are for use in systems with phosphate ester fluids. Exposure to petroleum based fluids, greases and lubricants will damage the seals.



sunhydraulics.com/model/NFFD

Needle valves are fully adjustable orifices used to regulate flow. They are infinitely adjustable from fully closed up to the maximum orifice diameter. They are not pressure compensated and may be used as flow controls or as shutoff valves.

TECHNICAL DATA

NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-18A
Series	4
Capacity	530 L/min. (21,6 mm)
Maximum Operating Pressure	350 bar
Adjustment - No. of CCW Turns from Fully Closed to Fully Open	5
Valve Hex Size	41,3 mm
Valve Installation Torque	474 - 508 Nm
Adjustment Screw Internal Hex Size	4 mm
Locknut Hex Size	15 mm
Locknut Torque	9 - 10 Nm
Seal kit - Cartridge	Buna: 990018007
Seal kit - Cartridge	EPDM: 990018014
Seal kit - Cartridge	Polyurethane: 990018002
Seal kit - Cartridge	Viton: 990018006
Model Weight	1.21 kg.

CONFIGURATION OPTIONS


Model Code Example: NFFDLIN

CONTROL (L)	MAXIMUM ORIFICE DIAMETER (I)	SEAL MATERIAL	(N) MATERIAL/COATING
L Standard Screw Adjustment	I .85 in. (21,6 mm)	N Buna-N	Standard Material/Coating
H Calibrated Handknob with Detent Lock		E EPDM	/AP Stainless Steel, Passivated
K Handknob		V Viton	/LH Mild Steel, Zinc-Nickel
R Capped Screw Adjustment			

Y Tri-Grip Handknob

TECHNICAL FEATURES

- All 2-port flow control cartridges are physically and functionally interchangeable (i.e. same flow path, same cavity for a given frame size). However, cartridge extension dimensions from the mounting surface may vary.
- Because needle valves are non-compensating devices, the fixed orifice size will regulate flow through the valve in proportion to the square root of the pressure differential across ports 1 and 2.
- A balanced adjustment mechanism allows for easy adjustment even at high pressures.
- The sharp-edged orifice design minimizes flow variations due to viscosity changes.
- The flow path through this valve is bi-directional. The preferred path is port 1 to 2, to allow interchangeability with other flow controls.
- There is no leakage when the adjustment mechanism is turned to the shut-off position.
- Cartridges configured with EPDM seals are for use in systems with phosphate ester fluids. Exposure to petroleum based fluids, greases and lubricants will damage the seals.

